Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1573-403X
  • E-ISSN:

Abstract

Fractional flow reserve computed tomography (FFRCT) is a novel imaging modality. It utilizes computational fluid dynamics analysis of coronary blood flow obtained from CCTA images to estimate the decrease in pressure across coronary stenosis during the maximum hyperemia.

The FFRCT can serve as a valuable tool in the assessment of coronary artery disease (CAD). This non-invasive option can be used as an alternative to the invasive fractional Flow Reserve (FFR) evaluation, which is presently considered the gold standard for evaluating the physiological significance of coronary stenoses. It can help in several clinical situations, including Assessment of Acute and stable chest pain, virtual planning for coronary stenting, and treatment decision-making.

Although FFRCT has demonstrated potential clinical applications as a non-invasive imaging technique, it is also crucial to acknowledge its limitations in clinical practice. As a result, it is imperative to meticulously evaluate the advantages and drawbacks of FFRCT individually and contemplate its application in combination with other diagnostic examinations and clinical data.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X300384240529124517
2024-06-04
2024-10-09
Loading full text...

Full text loading...

References

  1. KhanM.A.B. HashimM.J. MustafaH. Global epidemiology of ischemic heart disease: Results from the global burden of disease study.Cureus2020127e934910.7759/cureus.9349 32742886
    [Google Scholar]
  2. BenzD.C. GiannopoulosA.A. Fractional flow reserve as the standard of reference: All that glistens is not gold.J. Nucl. Cardiol.20202741314131610.1007/s12350‑019‑01771‑3 31175624
    [Google Scholar]
  3. ToninoP.A.L. De BruyneB. PijlsN.H.J. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention.N. Engl. J. Med.2009360321322410.1056/NEJMoa0807611 19144937
    [Google Scholar]
  4. MinJ.K. TaylorC.A. AchenbachS. Noninvasive Fractional Flow Reserve Derived From Coronary CT Angiography.JACC Cardiovasc. Imaging20158101209122210.1016/j.jcmg.2015.08.006 26481846
    [Google Scholar]
  5. KofoedK.F. BosserdtM. Maurovich-HorvatP. Comparative effectiveness of initial computed tomography and invasive coronary angiography in women and men with stable chest pain and suspected coronary artery disease: multicentre randomised trial.BMJ2022379e071133 36261169
    [Google Scholar]
  6. GonzalezJ.A. LipinskiM.J. FlorsL. ShawP.W. KramerC.M. SalernoM. Meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial ischemia assessment versus invasive fractional flow reserve.Am. J. Cardiol.201511691469147810.1016/j.amjcard.2015.07.078 26347004
    [Google Scholar]
  7. MeijboomW.B. Van MieghemC.A.G. van PeltN. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina.J. Am. Coll. Cardiol.200852863664310.1016/j.jacc.2008.05.024 18702967
    [Google Scholar]
  8. Arbab-ZadehA. HoeJ. Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography methods, caveats, and implications.JACC Cardiovasc. Imaging20114219120210.1016/j.jcmg.2010.10.011 21329905
    [Google Scholar]
  9. TaylorC.A. FonteT.A. MinJ.K. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis.J. Am. Coll. Cardiol.201361222233224110.1016/j.jacc.2012.11.083 23562923
    [Google Scholar]
  10. KrukM. WardziakŁ. DemkowM. Workstation-Based Calculation of CTA-Based FFR for Intermediate Stenosis.JACC Cardiovasc. Imaging20169669069910.1016/j.jcmg.2015.09.019 26897667
    [Google Scholar]
  11. RiK. KumamaruK.K. FujimotoS. Noninvasive Computed Tomography–Derived Fractional Flow Reserve Based on Structural and Fluid Analysis: Reproducibility of On-site Determination by Unexperienced Observers.J. Comput. Assist. Tomogr.201842225626210.1097/RCT.0000000000000679 28937495
    [Google Scholar]
  12. BlancoP.J. BulantC.A. MüllerL.O. Comparison of 1D and 3D Models for the Estimation of Fractional Flow Reserve.Sci. Rep.2018811727510.1038/s41598‑018‑35344‑0 30467321
    [Google Scholar]
  13. AlastrueyJ. XiaoN. FokH. SchaeffterT. FigueroaC.A. On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics.J. R. Soc. Interface2016131192016007310.1098/rsif.2016.0073 27307511
    [Google Scholar]
  14. ItuL. RapakaS. PasseriniT. GeorgescuB. SchwemmerC. SchoebingerM. Microneedles for drug delivery: Trends and progress.Drug Deliv.201623723382354
    [Google Scholar]
  15. KooB.K. ErglisA. DohJ.H. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter discover-flow (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study.J. Am. Coll. Cardiol.201158191989199710.1016/j.jacc.2011.06.066 22032711
    [Google Scholar]
  16. NakazatoR. ParkH.B. BermanD.S. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the defacto study.Circ. Cardiovasc. Imaging20136688188910.1161/CIRCIMAGING.113.000297 24081777
    [Google Scholar]
  17. NørgaardB.L. LeipsicJ. GaurS. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps).J. Am. Coll. Cardiol.201463121145115510.1016/j.jacc.2013.11.043 24486266
    [Google Scholar]
  18. YangD.H. KimY.H. RohJ.H. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion.Eur. Heart J. Cardiovasc. Imaging201718443244010.1093/ehjci/jew094 27354345
    [Google Scholar]
  19. CamiE. TagamiT. RaffG. GallagherM. ChinnaiyanK. BilolikarA.N. Dissolving microneedles: Applications and growing therapeutic po-tential.J. Control. Rel2022348186205
    [Google Scholar]
  20. CamiE. TagamiT. RaffG. Assessment of lesion-specific ischemia using fractional flow reserve (FFR) profiles derived from coronary computed tomography angiography (FFRCT) and invasive pressure measurements (FFRINV): Importance of the site of measurement and implications for patient referral for invasive coronary angiography and percutaneous coronary intervention.J. Cardiovasc. Comput. Tomogr.201812648049210.1016/j.jcct.2018.09.003 30274795
    [Google Scholar]
  21. KuehS.H. MooneyJ. OhanaM. Fractional flow reserve derived from coronary computed tomography angiography reclassification rate using value distal to lesion compared to lowest value.J. Cardiovasc. Comput. Tomogr.201711646246710.1016/j.jcct.2017.09.009 28986147
    [Google Scholar]
  22. OmoriH. HaraM. SobueY. Determination of the Optimal Measurement Point for Fractional Flow Reserve Derived From CTA Using Pressure Wire Assessment as Reference.AJR Am. J. Roentgenol.202121661492149910.2214/AJR.20.24090 32876482
    [Google Scholar]
  23. SandN.P.R. VeienK.T. NielsenS.S. Prospective comparison of FFR derived from coronary CT angiography with SPECT perfusion imaging in stable coronary artery disease.JACC Cardiovasc. Imaging201811111640165010.1016/j.jcmg.2018.05.004 29909103
    [Google Scholar]
  24. ColletC. SonckJ. VandelooB. Measurement of hyperemic pullback pressure gradients to characterize patterns of coronary atherosclerosis.J. Am. Coll. Cardiol.201974141772178410.1016/j.jacc.2019.07.072 31582137
    [Google Scholar]
  25. LeeJ.M. ChoiG. KooB.K. Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics.JACC Cardiovasc. Imaging20191261032104310.1016/j.jcmg.2018.01.023 29550316
    [Google Scholar]
  26. TakagiH. IshikawaY. OriiM. Optimized interpretation of fractional flow reserve derived from computed tomography: Comparison of three interpretation methods.J. Cardiovasc. Comput. Tomogr.201913213414110.1016/j.jcct.2018.10.027 30385326
    [Google Scholar]
  27. DorisM.K. OtakiY. ArnsonY. Non-invasive fractional flow reserve in vessels without severe obstructive stenosis is associated with coronary plaque burden.J. Cardiovasc. Comput. Tomogr.201812537938410.1016/j.jcct.2018.05.003 29784622
    [Google Scholar]
  28. TakagiH. LeipsicJ.A. McNamaraN. Trans-lesional fractional flow reserve gradient as derived from coronary CT improves patient management: Advance registry.J. Cardiovasc. Comput. Tomogr.2022161192610.1016/j.jcct.2021.08.003 34518113
    [Google Scholar]
  29. National clinical guideline centre for acute and chronic conditions (UK) chest pain of recent onset: Assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. London.Royal College of Physicians (UK)2010 22420013
    [Google Scholar]
  30. DiamondG.A. ForresterJ.S. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease.N. Engl. J. Med.1979300241350135810.1056/NEJM197906143002402 440357
    [Google Scholar]
  31. NormanJ.J. AryaJ.M. McClainM.A. FrewP.M. MeltzerM.I. PrausnitzM.R. Microneedle patches: Usability and acceptability for self-vaccination against influenza.Vaccine2016321618561862
    [Google Scholar]
  32. MontalescotG. SechtemU. AchenbachS. 2013 ESC guidelines on the management of stable coronary artery disease.Eur. Heart J.201334382949300310.1093/eurheartj/eht296 23996286
    [Google Scholar]
  33. DouglasP.S. PontoneG. HlatkyM.A. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: The prospective longitudinal trial of FFRCT: Out-come and resource impacts study.Eur. Heart J.201536473359336710.1093/eurheartj/ehv444 26330417
    [Google Scholar]
  34. GulatiM. LevyP.D. MukherjeeD. AmsterdamE. BhattD.L. BirtcherK.K. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the american college of cardiology/american heart association joint committee on clinical practice guidelines.Circulation202114422e368e454
    [Google Scholar]
  35. CookC.M. PetracoR. Shun-ShinM.J. Diagnostic accuracy of computed tomography–derived fractional flow reserve.JAMA Cardiol.20172780381010.1001/jamacardio.2017.1314 28538960
    [Google Scholar]
  36. GaoY. ZhaoN. SongL. Diagnostic performance of CT FFR with a new parameter optimized computational fluid dynamics algorithm from the CT-FFR-CHINA trial: Characteristic analysis of gray zone lesions and misdiagnosed lesions.Front. Cardiovasc. Med.2022981946010.3389/fcvm.2022.819460 35391840
    [Google Scholar]
  37. NewbyD.E. AdamsonP.D. BerryC. Coronary CT angiography and 5-year risk of myocardial infarction.N. Engl. J. Med.20183791092493310.1056/NEJMoa1805971 30145934
    [Google Scholar]
  38. CurzenN. RanaO. NicholasZ. Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study.Circ. Cardiovasc. Interv.20147224825510.1161/CIRCINTERVENTIONS.113.000978 24642999
    [Google Scholar]
  39. NørgaardB.L. HjortJ. GaurS. Clinical use of coronary CTA–derived FFR for decision-making in stable CAD.JACC Cardiovasc. Imaging201710554155010.1016/j.jcmg.2015.11.025 27085447
    [Google Scholar]
  40. NørgaardB.L. FairbairnT.A. SafianR.D. Coronary CT angiography-derived fractional flow reserve testing in patients with stable coronary artery disease: Recommendations on interpretation and reporting.Radiol. Cardiothorac. Imaging201915e19005010.1148/ryct.2019190050 33778528
    [Google Scholar]
  41. RajiahP. CummingsK.W. WilliamsonE. YoungP.M. CT fractional flow reserve: A practical guide to application, interpretation, and problem solving.Radiographics202242234035810.1148/rg.210097 35119968
    [Google Scholar]
  42. DouglasP.S. HoffmannU. PatelM.R. Outcomes of anatomical versus functional testing for coronary artery disease.N. Engl. J. Med.2015372141291130010.1056/NEJMoa1415516 25773919
    [Google Scholar]
  43. PijlsN.H.J. van SchaardenburghP. ManoharanG. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study.J. Am. Coll. Cardiol.200749212105211110.1016/j.jacc.2007.01.087 17531660
    [Google Scholar]
  44. GoldsteinJ.A. ChinnaiyanK.M. AbidovA. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial.J. Am. Coll. Cardiol.201158141414142210.1016/j.jacc.2011.03.068 21939822
    [Google Scholar]
  45. GoldsteinJ.A. GallagherM.J. O’NeillW.W. RossM.A. O’NeilB.J. RaffG.L. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain.J. Am. Coll. Cardiol.200749886387110.1016/j.jacc.2006.08.064 17320744
    [Google Scholar]
  46. HoffmannU. TruongQ.A. SchoenfeldD.A. Coronary CT angiography versus standard evaluation in acute chest pain.N. Engl. J. Med.2012367429930810.1056/NEJMoa1201161 22830462
    [Google Scholar]
  47. FischerA.M. van AssenM. SchoepfU.J. Non-invasive fractional flow reserve (FFRCT) in the evaluation of acute chest pain – Concepts and first experiences.Eur. J. Radiol.202113810963310.1016/j.ejrad.2021.109633 33735700
    [Google Scholar]
  48. ParkD.W. ClareR.M. SchulteP.J. Extent, location, and clinical significance of non-infarct-related coronary artery disease among patients with ST-elevation myocardial infarction.JAMA2014312192019202710.1001/jama.2014.15095 25399277
    [Google Scholar]
  49. EngstrømT. KelbækH. HelqvistS. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): An open-label, randomised controlled trial.Lancet2015386999466567110.1016/S0140‑6736(15)60648‑1 26347918
    [Google Scholar]
  50. SmitsP.C. Abdel-WahabM. NeumannF.J. Fractional flow reserve–guided multivessel angioplasty in myocardial infarction.N. Engl. J. Med.2017376131234124410.1056/NEJMoa1701067 28317428
    [Google Scholar]
  51. GershlickA.H. KhanJ.N. KellyD.J. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: the CvLPRIT trial.J. Am. Coll. Cardiol.2015651096397210.1016/j.jacc.2014.12.038 25766941
    [Google Scholar]
  52. MehtaS.R. WoodD.A. StoreyR.F. Complete revascularization with multivessel PCI for myocardial infarction.N. Engl. J. Med.2019381151411142110.1056/NEJMoa1907775 31475795
    [Google Scholar]
  53. ColletJ.P. ThieleH. BarbatoE. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation.Rev. Esp. Cardiol.202174654410.1016/j.rec.2021.05.002 34020768
    [Google Scholar]
  54. IbánezB. JamesS. AgewallS. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation.Rev. Esp. Cardiol.20177012108210.1016/j.rec.2017.11.010 29198432
    [Google Scholar]
  55. ThimT. van der HoevenN.W. MustoC. Evaluation and management of nonculprit lesions in STEMI.JACC Cardiovasc. Interv.202013101145115410.1016/j.jcin.2020.02.030 32438985
    [Google Scholar]
  56. GaurS. TaylorC.A. JensenJ.M. FFR derived from coronary CT angiography in nonculprit lesions of patients with recent STEMI.JACC Cardiovasc. Imaging201710442443310.1016/j.jcmg.2016.05.019 27743953
    [Google Scholar]
  57. AhresA. SimonJ. JablonkaiB. Diagnostic performance of on-site computed tomography derived fractional flow reserve on non-culprit coronary lesions in patients with acute coronary syndrome.Life20221211182010.3390/life12111820 36362974
    [Google Scholar]
  58. PijlsN.H.J. FearonW.F. ToninoP.A.L. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Mul-tivessel Evaluation) study.J. Am. Coll. Cardiol.201056317718410.1016/j.jacc.2010.04.012 20537493
    [Google Scholar]
  59. AlfonsoF. ByrneR.A. RiveroF. KastratiA. Current treatment of in-stent restenosis.J. Am. Coll. Cardiol.201463242659267310.1016/j.jacc.2014.02.545 24632282
    [Google Scholar]
  60. SiontisG.C.M. StefaniniG.G. MavridisD. Percutaneous coronary interventional strategies for treatment of in-stent restenosis: A network meta-analysis.Lancet2015386999465566410.1016/S0140‑6736(15)60657‑2 26334160
    [Google Scholar]
  61. JamesS.K. StenestrandU. LindbäckJ. Long-term safety and efficacy of drug-eluting versus bare-metal stents in Sweden.N. Engl. J. Med.2009360191933194510.1056/NEJMoa0809902 19420363
    [Google Scholar]
  62. OjhaC.P. IbrahimA. PaulT.K. MulukutlaV. NagarajaraoH.S. The clinical significance of physiological assessment of residual ischemia after percutaneous coronary intervention.Curr. Cardiol. Rep.20202241710.1007/s11886‑020‑1269‑7 32036467
    [Google Scholar]
  63. SatoA. AonumaK. Role of cardiac multidetector computed tomography beyond coronary angiography.Circ. J.201579471272010.1253/circj.CJ‑15‑0102 25753692
    [Google Scholar]
  64. TangC.X. GuoB.J. SchoepfJ.U. Feasibility and prognostic role of machine learning-based FFRCT in patients with stent implantation.Eur. Radiol.20213196592660410.1007/s00330‑021‑07922‑w 33864504
    [Google Scholar]
  65. TangC.X. LiuC.Y. LuM.J. CT FFR for ischemia-specific CAD with a new computational fluid dynamics algorithm.JACC Cardiovasc. Imaging202013498099010.1016/j.jcmg.2019.06.018 31422138
    [Google Scholar]
  66. AlexanderJ.H. SmithP.K. Coronary-artery bypass grafting.N. Engl. J. Med.2016374201954196410.1056/NEJMra1406944 27192673
    [Google Scholar]
  67. FischerJ.J. SamadyH. McPhersonJ.A. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity.Am. J. Cardiol.200290321021510.1016/S0002‑9149(02)02456‑6 12127605
    [Google Scholar]
  68. ToninoP.A.L. FearonW.F. De BruyneB. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation.J. Am. Coll. Cardiol.201055252816282110.1016/j.jacc.2009.11.096 20579537
    [Google Scholar]
  69. FergusonT.B.Jr ChenC. BabbJ.D. EfirdJ.T. DaggubatiR. CahillJ.M. Fractional flow reserve–guided coronary artery bypass grafting: Can intraoperative physiologic imaging guide decision making?J. Thorac. Cardiovasc. Surg.20131464824835.e110.1016/j.jtcvs.2013.06.026 23915918
    [Google Scholar]
  70. PellicanoM. De BruyneB. TothG.G. CasselmanF. WijnsW. BarbatoE. Fractional flow reserve to guide and to assess coronary artery bypass grafting.Eur. Heart J.2017382519591968 28025191
    [Google Scholar]
  71. FournierS. TothG.G. De BruyneB. Six-year follow-up of fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery.Circ. Cardiovasc. Interv.2018116e00636810.1161/CIRCINTERVENTIONS.117.006368 29848611
    [Google Scholar]
  72. GlineurD. GrauJ.B. EtienneP.Y. Impact of preoperative fractional flow reserve on arterial bypass graft anastomotic function: the IMPAG trial.Eur. Heart J.201940292421242810.1093/eurheartj/ehz329 31155673
    [Google Scholar]
  73. LytleB. GaudinoM. Fractional flow reserve for coronary artery bypass surgery.Circulation2020142141315131610.1161/CIRCULATIONAHA.120.050818 33017205
    [Google Scholar]
  74. KawashimaH. OnumaY. AndreiniD. Successful coronary artery bypass grafting based solely on non-invasive coronary computed tomography angiography.Cardiovasc. Revasc. Med.20224018718910.1016/j.carrev.2021.09.003 34556432
    [Google Scholar]
  75. SonckJ. MiyazakiY. ColletC. Feasibility of planning coronary artery bypass grafting based only on coronary computed tomography angiography and CT-derived fractional flow reserve:A pilot survey of the surgeons involved in the randomized SYNTAX III Revolution trial.Interact. Cardiovasc. Thorac. Surg.201929220921610.1093/icvts/ivz046 30887024
    [Google Scholar]
  76. KnuutiJ. WijnsW. SarasteA. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes.Eur. Heart J.202041340747710.1093/eurheartj/ehz425 31504439
    [Google Scholar]
  77. MossA.J. WilliamsM.C. NewbyD.E. NicolE.D. The updated NICE guidelines: Cardiac CT as the first-line test for coronary artery disease.Curr. Cardiovasc. Imaging Rep.20171051510.1007/s12410‑017‑9412‑6 28446943
    [Google Scholar]
  78. KawashimaH. PompilioG. AndreiniD. Safety and feasibility evaluation of planning and execution of surgical revascularisation solely based on coronary CTA and FFR CT in patients with complex coronary artery disease: Study protocol of the FASTTRACK CABG study.BMJ Open20201012e03815210.1136/bmjopen‑2020‑038152 33303435
    [Google Scholar]
  79. ZuZ.Y. XuP.P. ChenQ. The prognostic value of CT-derived fractional flow reserve in coronary artery bypass graft: A retrospective multicenter study.Eur. Radiol.20223353029304010.1007/s00330‑022‑09353‑7 36576550
    [Google Scholar]
  80. CashinW.L. SanmarcoM.E. NessimS.A. BlankenhornD.H. Accelerated progression of atherosclerosis in coronary vessels with minimal lesions that are bypassed.N. Engl. J. Med.19843111382482810.1056/NEJM198409273111304 6332274
    [Google Scholar]
  81. PeregD. FeferP. SamuelM. Native coronary artery patency after coronary artery bypass surgery.JACC Cardiovasc. Interv.20147776176710.1016/j.jcin.2014.01.164 25060019
    [Google Scholar]
  82. ZouridakisE. SchwartzmanR. Garcia-MollX. Increased plasma endothelin levels in angina patients with rapid coronary artery dis-ease progression.Eur. Heart J.200122171578158410.1053/euhj.2000.2588 11492987
    [Google Scholar]
  83. KobayashiY. LønborgJ. JongA. Prognostic value of the residual SYNTAX score after functionally complete revascularization in ACS.J. Am. Coll. Cardiol.201872121321132910.1016/j.jacc.2018.06.069 30213322
    [Google Scholar]
  84. LeeJ.M. HwangD. ChoiK.H. Prognostic impact of residual anatomic disease burden after functionally complete revascularization.Circ. Cardiovasc. Interv.2020139e00923210.1161/CIRCINTERVENTIONS.120.009232 32895005
    [Google Scholar]
  85. FournierS. CiccarelliG. TothG.G. Association of improvement in fractional flow reserve with outcomes, including symptomatic relief, after percutaneous coronary intervention.JAMA Cardiol.20194437037410.1001/jamacardio.2019.0175 30840026
    [Google Scholar]
  86. LeeJ.M. HwangD. ChoiK.H. Prognostic implications of relative increase and final fractional flow reserve in patients with stent implantation.JACC Cardiovasc. Interv.201811202099210910.1016/j.jcin.2018.07.031 30336814
    [Google Scholar]
  87. AgarwalS.K. KasulaS. HaciogluY. AhmedZ. UretskyB.F. HakeemA. Utilizing post-intervention fractional flow reserve to optimize acute results and the relationship to long-term outcomes.JACC Cardiovasc. Interv.20169101022103110.1016/j.jcin.2016.01.046 27198682
    [Google Scholar]
  88. PirothZ. TothG.G. ToninoP.A.L. Prognostic value of fractional flow reserve measured immediately after drug-eluting stent implantation.Circ. Cardiovasc. Interv.2017108e00523310.1161/CIRCINTERVENTIONS.116.005233 28790165
    [Google Scholar]
  89. NagumoS. ColletC. NorgaardB.L. Rationale and design of the precise percutaneous coronary intervention plan (P3) study: Pro-spective evaluation of a virtual computed tomography‐based percutaneous intervention planner.Clin. Cardiol.202144444645410.1002/clc.23551 33656754
    [Google Scholar]
  90. SonckJ. NagumoS. NorgaardB.L. Clinical validation of a virtual planner for coronary interventions based on coronary ct angiography.JACC Cardiovasc. Imaging20221571242125510.1016/j.jcmg.2022.02.003 35798401
    [Google Scholar]
  91. ModiB.N. SankaranS. KimH.J. Predicting the physiological effect of revascularization in serially diseased coronary arteries.Circ. Cardiovasc. Interv.2019122e00757710.1161/CIRCINTERVENTIONS.118.007577 30722688
    [Google Scholar]
  92. ColletC. OnumaY. AndreiniD. Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease.Eur. Heart J.201839413689369810.1093/eurheartj/ehy581 30312411
    [Google Scholar]
  93. AndreiniD. ModoloR. KatagiriY. Impact of fractional flow reserve derived from coronary computed tomography angiography on heart team treatment decision-making in patients with multivessel coronary artery disease.Circ. Cardiovasc. Interv.20191212e00760710.1161/CIRCINTERVENTIONS.118.007607 31833413
    [Google Scholar]
  94. AndreiniD. MushtaqS. PontoneG. Diagnostic performance of coronary CT angiography carried out with a novel whole-heart cover-age high-definition CT scanner in patients with high heart rate.Int. J. Cardiol.201825732533110.1016/j.ijcard.2017.10.084 29506722
    [Google Scholar]
  95. DouglasP.S. De BruyneB. PontoneG. 1-Year outcomes of FFRCT-guided care in patients with suspected coronary disease.J. Am. Coll. Cardiol.201668543544510.1016/j.jacc.2016.05.057 27470449
    [Google Scholar]
  96. FairbairnT.A. NiemanK. AkasakaT. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: Lessons from the ADVANCE Registry.Eur. Heart J.201839413701371110.1093/eurheartj/ehy530 30165613
    [Google Scholar]
  97. CurzenN. NicholasZ. StuartB. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: The FORECAST randomized trial.Eur. Heart J.202142373844385210.1093/eurheartj/ehab444 34269376
    [Google Scholar]
  98. DouglasP.S. NannaM.G. KelseyM.D. Comparison of an initial risk-based testing strategy vs usual testing in stable symptomatic patients with suspected coronary artery disease.JAMA Cardiol.202381090491410.1001/jamacardio.2023.2595 37610731
    [Google Scholar]
  99. HeartFlow FFRCT for estimating fractional flow reserve from coronary CT angiography.2017Available from: https://www.nice.org.uk/guidance/mtg32 (accessed on 24-5-2024)
  100. HlatkyM.A. De BruyneB. PontoneG. Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography.J. Am. Coll. Cardiol.201566212315232310.1016/j.jacc.2015.09.051 26475205
    [Google Scholar]
  101. LuM.T. FerencikM. RobertsR.S. Noninvasive FFR derived from coronary CT angiography.JACC Cardiovasc. Imaging201710111350135810.1016/j.jcmg.2016.11.024 28412436
    [Google Scholar]
  102. PontoneG. Weir-McCallJ.R. BaggianoA. Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis.Radiology2019292359760510.1148/radiol.2019182673 31335283
    [Google Scholar]
  103. AndreiniD. PontoneG. MushtaqS. Diagnostic accuracy of rapid kilovolt peak–switching dual-energy ct coronary angiography in patients with a high calcium score.JACC Cardiovasc. Imaging20158674674810.1016/j.jcmg.2014.10.013 25797129
    [Google Scholar]
  104. ChoI ElmoreK , ó Hartaigh B, et al. Heart-rate dependent improvement in image quality and diagnostic accuracy of coronary computed tomographic angiography by novel intracycle motion correction algorithm.Clin. Imaging201539342142610.1016/j.clinimag.2014.11.020 25649255
    [Google Scholar]
  105. NørgaardB.L. GaurS. LeipsicJ. Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease.JACC Cardiovasc. Imaging2015891045105510.1016/j.jcmg.2015.06.003 26298072
    [Google Scholar]
  106. KoB.S. CameronJ.D. MunnurR.K. Noninvasive CT-derived FFR based on structural and fluid analysis.JACC Cardiovasc. Imaging201710666367310.1016/j.jcmg.2016.07.005 27771399
    [Google Scholar]
  107. KumamaruK.K. FujimotoS. OtsukaY. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography.Eur. Heart J. Cardiovasc. Imaging202021443744531230076
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X300384240529124517
Loading
/content/journals/ccr/10.2174/011573403X300384240529124517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test