Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Current arrhythmia therapies such as ion channel blockers, catheter ablation, or implantable cardioverter defibrillators have limitations and side effects, and given the proarrhythmic risk associated with conventional, ion channel-targeted anti-arrhythmic drug therapies, a new approach to arrhythmias may be warranted. Measuring and adjusting the level of specific ions that impact heart rhythm can be a simple and low-complication strategy for preventing or treating specific arrhythmias. In addition, new medicines targeting these ions may effectively treat arrhythmias. Numerous studies have shown that intracellular and extracellular zinc concentrations impact the heart's electrical activity. Zinc has been observed to affect cardiac rhythm through a range of mechanisms. These mechanisms encompass the modulation of sodium, calcium, and potassium ion channels, as well as the influence on beta-adrenergic receptors and the enzyme adenylate cyclase. Moreover, zinc can either counteract or induce oxidative stress, hinder calmodulin or the enzyme Ca (2+)/calmodulin-dependent protein kinase II (CaMKII), regulate cellular ATP levels, affect the processes of aging and autophagy, influence calcium ryanodine receptors, and control cellular inflammation. Additionally, zinc has been implicated in the modulation of circadian rhythm. In all the aforementioned cases, the effect of zinc on heart rhythm is largely influenced by its intracellular and extracellular concentrations. Optimal zinc levels are essential for maintaining a normal heart rhythm, while imbalances-whether deficiencies or excesses-can disrupt electrical activity and contribute to arrhythmias

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X299868240904120621
2024-09-19
2025-04-22
Loading full text...

Full text loading...

References

  1. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolàJ. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. Sliwa-HahnleK. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolaJ. FowkesF.G. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. Abbasi-KangevariM. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. Akande-SholabiW. AkliluA. AkunnaC.J. AlahdabF. Al-EyadhyA. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. Almasi-HashianiA. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. Ansari-MoghaddamA. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. Avila-BurgosL. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. BD.B. BaheiraeiN. BaigA.A. BakhtiariA. BanachM. BanikP.C. BaptistaE.A. BarbozaM.A. BaruaL. BasuS. BediN. BéjotY. BennettD.A. BensenorI.M. BermanA.E. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BrantL.C. BrennerH. BrikoN.I. ButtZ.A. Caetano dos SantosF.L. CahillL.E. Cahuana-HurtadoL. CámeraL.A. Campos-NonatoI.R. Cantu-BritoC. CarJ. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. CharanJ. ChattuV.K. ChenS. ChinK.L. ChoiJ-Y. ChuD-T. ChungS-C. CirilloM. CoffeyS. ContiS. CostaV.M. CundiffD.K. DadrasO. DagnewB. DaiX. DamascenoA.A. DandonaL. DandonaR. DavletovK. De la Cruz-GóngoraV. De la HozF.P. De NeveJ-W. Denova-GutiérrezE. Derbew MollaM. DersehB.T. DesaiR. DeuschlG. DharmaratneS.D. DhimalM. DhunganaR.R. DianatinasabM. DiazD. DjalaliniaS. DokovaK. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. EbtehajS. EftekhariA. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EsteghamatiS. EtissoA.E. EyawoO. FadhilI. FaraonE.J. FarisP.S. FarwatiM. FarzadfarF. FernandesE. Fernandez PrendesC. FerraraP. FilipI. FischerF. FloodD. FukumotoT. GadM.M. GaidhaneS. GanjiM. GargJ. GebreA.K. GebregiorgisB.G. GebregzabiherK.Z. GebremeskelG.G. GetacherL. ObsaA.G. GhajarA. GhashghaeeA. GhithN. GiampaoliS. GilaniS.A. GillP.S. GillumR.F. GlushkovaE.V. GnedovskayaE.V. GolechhaM. GonfaK.B. GoudarzianA.H. GoulartA.C. GuadamuzJ.S. GuhaA. GuoY. GuptaR. HachinskiV. Hafezi-NejadN. HaileT.G. HamadehR.R. HamidiS. HankeyG.J. HargonoA. HartonoR.K. HashemianM. HashiA. HassanS. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HeidariG. HerteliuC. HollaR. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HuangJ. HumayunA. IavicoliI. IbenemeC.U. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M. IslamR.M. IsoH. IwagamiM. JainV. JavaheriT. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JonasJ.B. JonnagaddalaJ. JoukarF. JozwiakJ.J. JürissonM. KabirA. KahlonT. KalaniR. KalhorR. KamathA. KamelI. KandelH. KandelA. KarchA. KasaA.S. KatotoP.D. KayodeG.A. KhaderY.S. KhammarniaM. KhanM.S. KhanM.N. KhanM. KhanE.A. KhatabK. KibriaG.M. KimY.J. KimG.R. KimokotiR.W. KisaS. KisaA. KivimäkiM. KolteD. KoolivandA. KorshunovV.A. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. Kuate DefoB. Kucuk BicerB. KulkarniV. KumarG.A. KumarN. KurmiO.P. KusumaD. KwanG.F. La VecchiaC. LaceyB. LallukkaT. LanQ. LasradoS. LassiZ.S. LauriolaP. LawrenceW.R. LaxmaiahA. LeGrandK.E. LiM-C. LiB. LiS. LimS.S. LimL-L. LinH. LinZ. LinR-T. LiuX. LopezA.D. LorkowskiS. LotufoP.A. LugoA. MN.K. MadottoF. MahmoudiM. MajeedA. MalekzadehR. MalikA.A. MamunA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MathurM.R. MazzagliaG. MehataS. MehndirattaM.M. MeierT. MenezesR.G. MeretojaA. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. MoazenB. MoghadaszadehM. MohammadY. MohammadD.K. MohammedS. MohammedM.A. MokhayeriY. MolokhiaM. MontasirA.A. MoradiG. MoradzadehR. MoragaP. MorawskaL. Moreno VelásquezI. MorzeJ. MubarikS. MuruetW. MusaK.I. NagarajanA.J. NaliniM. NangiaV. NaqviA.A. Narasimha SwamyS. NascimentoB.R. NayakV.C. NazariJ. NazarzadehM. NegoiR.I. Neupane KandelS. NguyenH.L. NixonM.R. NorrvingB. NoubiapJ.J. NoutheB.E. NowakC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OrruH. OrtizA. OstroffS.M. PadubidriJ.R. PalladinoR. PanaA. Panda-JonasS. ParekhU. ParkE-C. ParviziM. Pashazadeh KanF. PatelU.K. PathakM. PaudelR. PepitoV.C. PerianayagamA. PericoN. PhamH.Q. PilgrimT. PiradovM.A. PishgarF. PodderV. PolibinR.V. PourshamsA. PribadiD.R. RabieeN. RabieeM. RadfarA. RafieiA. RahimF. Rahimi-MovagharV. Ur RahmanM.H. RahmanM.A. RahmaniA.M. RakovacI. RamP. RamalingamS. RanaJ. RanasingheP. RaoS.J. RathiP. RawalL. RawasiaW.F. RawassizadehR. RemuzziG. RenzahoA.M.N. RezapourA. RiahiS.M. Roberts-ThomsonR.L. RoeverL. RohloffP. RomoliM. RoshandelG. RwegereraG.M. SaadatagahS. Saber-AyadM.M. SabourS. SaccoS. SadeghiM. Saeedi MoghaddamS. SafariS. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SarveazadA. SathishT. SawhneyM. SaylanM. SchmidtM.I. SchutteA.E. SenthilkumaranS. SepanlouS.G. ShaF. ShahabiS. ShahidI. ShaikhM.A. ShamaliM. ShamsizadehM. ShawonM.S. SheikhA. ShigematsuM. ShinM-J. ShinJ.I. ShiriR. ShiueI. ShuvalK. SiabaniS. SiddiqiT.J. SilvaD.A.S. SinghJ.A. MtechA.S. SkryabinV.Y. SkryabinaA.A. SoheiliA. SpurlockE.E. StockfeltL. StorteckyS. StrangesS. Suliankatchi AbdulkaderR. TadbiriH. TadesseE.G. TadesseD.B. TajdiniM. TariqujjamanM. TeklehaimanotB.F. TemsahM-H. TesemaA.K. ThakurB. ThankappanK.R. ThaparR. ThriftA.G. TimalsinaB. TonelliM. TouvierM. Tovani-PaloneM.R. TripathiA. TripathyJ.P. TruelsenT.C. TsegayG.M. TsegayeG.W. TsilimparisN. TusaB.S. TyrovolasS. UmapathiK.K. UnimB. UnnikrishnanB. UsmanM.S. VaduganathanM. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. VujcicI.S. WaheedY. WangY. WangF. WeiJ. WeintraubR.G. WeldemariamA.H. WestermanR. WinklerA.S. WiysongeC.S. WolfeC.D. WubishetB.L. XuG. YadollahpourA. YamagishiK. YanL.L. YandrapalliS. YanoY. YatsuyaH. YeheyisT.Y. YeshawY. YilgwanC.S. YonemotoN. YuC. YusefzadehH. ZachariahG. ZamanS.B. ZamanM.S. ZamanianM. ZandR. ZandifarA. ZarghiA. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZhangY. ZhangW. ZhongC. ZouZ. ZunigaY.M.H. MurrayC.J. FusterV. Global burden of cardiovascular diseases and risk factors, 1990–2019.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.01033309175
    [Google Scholar]
  2. WHOCardiovascular diseases.Available from:https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 2021
  3. LindbergT. WimoA. ElmståhlS. QiuC. BohmanD.M. Sanmartin BerglundJ. Prevalence and incidence of atrial fibrillation and other arrhythmias in the general older population: findings from the swedish national study on aging and care.Gerontol. Geriatr. Med.20195233372141985968710.1177/233372141985968731276022
    [Google Scholar]
  4. MurakoshiN. AonumaK. Epidemiology of arrhythmias and sudden cardiac death in Asia.Circ. J.201377102419243110.1253/circj.CJ‑13‑112924067274
    [Google Scholar]
  5. LakshminarayanK. AndersonD.C. HerzogC.A. QureshiA.I. Clinical epidemiology of atrial fibrillation and related cerebrovascular events in the United States.Neurologist200814314315010.1097/NRL.0b013e31815cffae18469671
    [Google Scholar]
  6. KhurshidS. ChoiS.H. WengL.C. WangE.Y. TrinquartL. BenjaminE.J. EllinorP.T. LubitzS.A. Frequency of cardiac rhythm abnormalities in a half million adults.Circ. Arrhythm. Electrophysiol.2018117e00627310.1161/CIRCEP.118.00627329954742
    [Google Scholar]
  7. SovariA.A. Cellular and molecular mechanisms of arrhythmia by oxidative stress.Cardiol. Res. Pract.201620161710.1155/2016/965607826981310
    [Google Scholar]
  8. BarthA.S. TomaselliG.F. Cardiac metabolism and arrhythmias.Circ. Arrhythm. Electrophysiol.20092332733510.1161/CIRCEP.108.81732019808483
    [Google Scholar]
  9. RokitaA.G. AndersonM.E. New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII).Circulation2012126172125213910.1161/CIRCULATIONAHA.112.12499023091085
    [Google Scholar]
  10. GettesL.S. Electrolyte abnormalities underlying lethal and ventricular arrhythmias.Circulation1992851I70I761728508
    [Google Scholar]
  11. KnezM. GlibeticM. Zinc as a biomarker of cardiovascular health.Front. Nutr.2021868607810.3389/fnut.2021.68607834395491
    [Google Scholar]
  12. MathieA. SuttonG.L. ClarkeC.E. VealeE.L. Zinc and copper: Pharmacological probes and endogenous modulators of neuronal excitability.Pharmacol. Ther.2006111356758310.1016/j.pharmthera.2005.11.00416410023
    [Google Scholar]
  13. NohS. LeeS.R. JeongY.J. KoK.S. RheeB.D. KimN. HanJ. The direct modulatory activity of zinc toward ion channels.Integr. Med. Res.20154314214610.1016/j.imr.2015.07.00428664120
    [Google Scholar]
  14. TuranB. Zinc-induced changes in ionic currents of cardiomyocytes.Biol. Trace Elem. Res.2003941496010.1385/BTER:94:1:4912907827
    [Google Scholar]
  15. ZhangS. KehlS.J. FedidaD. Modulation of Kv1.5 potassium channel gating by extracellular zinc.Biophys. J.200181112513610.1016/S0006‑3495(01)75686‑X11423401
    [Google Scholar]
  16. SchildL. MoczydlowskiE. Competitive binding interaction between Zn2+ and saxitoxin in cardiac Na+ channels. Evidence for a sulfhydryl group in the Zn2+/saxitoxin binding site.Biophys. J.199159352353710.1016/S0006‑3495(91)82269‑X1646656
    [Google Scholar]
  17. TuncayE. BilginogluA. SozmenN.N. ZeydanliE.N. UgurM. VassortG. TuranB. Intracellular free zinc during cardiac excitation–contraction cycle: calcium and redox dependencies.Cardiovasc. Res.201189363464210.1093/cvr/cvq35221062918
    [Google Scholar]
  18. InoueK. O’BryantZ. XiongZ.G. Zinc-permeable ion channels: Effects on intracellular zinc dynamics and potential physiological/pathophysiological significance.Curr. Med. Chem.201522101248125710.2174/092986732266615020915375025666796
    [Google Scholar]
  19. HartzellH.C. MéryP.F. FischmeisterR. SzaboG. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation.Nature1991351632757357610.1038/351573a01710784
    [Google Scholar]
  20. LengyelI. Fieuw-MakaroffS. HallA.L. SimA.T. RostasJ.A. DunkleyP.R. Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc.J. Neurochem.200075259460510.1046/j.1471‑4159.2000.0750594.x10899934
    [Google Scholar]
  21. LittleP.J. BhattacharyaR. MoreyraA.E. KorichnevaI.L. Zinc and cardiovascular disease.Nutrition20102611-121050105710.1016/j.nut.2010.03.00720950764
    [Google Scholar]
  22. AdameovaA. ShahA.K. DhallaN.S. Role of oxidative stress in the genesis of ventricular arrhythmias.Int. J. Mol. Sci.20202112420010.3390/ijms2112420032545595
    [Google Scholar]
  23. LuanY. LuanY. FengQ. ChenX. RenK.D. YangY. Emerging role of mitophagy in the heart: therapeutic potentials to modulate mitophagy in cardiac diseases.Oxid. Med. Cell. Longev.2021202111310.1155/2021/325996334603595
    [Google Scholar]
  24. DabravolskiS.A. SadykhovN.K. KartuesovA.G. BorisovE.E. SukhorukovV.N. OrekhovA.N. Interplay between Zn2+ homeostasis and mitochondrial functions in cardiovascular diseases and heart ageing.Int. J. Mol. Sci.20222313689010.3390/ijms2313689035805904
    [Google Scholar]
  25. XieW. SantulliG. ReikenS.R. YuanQ. OsborneB.W. ChenB.X. MarksA.R. Mitochondrial oxidative stress promotes atrial fibrillation.Sci. Rep.2015511142710.1038/srep1142726169582
    [Google Scholar]
  26. PrasadA.S. Zinc is an antioxidant and anti-inflammatory agent: Its role in human health.Front. Nutr.201411410.3389/fnut.2014.0001425988117
    [Google Scholar]
  27. DineleyK.E. VotyakovaT.V. ReynoldsI.J. Zinc inhibition of cellular energy production: Implications for mitochondria and neurodegeneration.J. Neurochem.200385356357010.1046/j.1471‑4159.2003.01678.x12694382
    [Google Scholar]
  28. TuncayE. TuranB. Intracellular Zn2+ increase in cardiomyocytes induces both electrical and mechanical dysfunction in heart via endogenous generation of reactive nitrogen species.Biol. Trace Elem. Res.2016169229430210.1007/s12011‑015‑0423‑326138011
    [Google Scholar]
  29. TuranB. TuncayE. Impact of labile zinc on heart function: from physiology to pathophysiology.Int. J. Mol. Sci.20171811239510.3390/ijms1811239529137144
    [Google Scholar]
  30. KambeT. TsujiT. HashimotoA. ItsumuraN. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism.Physiol. Rev.201595374978410.1152/physrev.00035.201426084690
    [Google Scholar]
  31. KondaiahP. YaduvanshiP.S. SharpP.A. PullakhandamR. Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption?Nutrients2019118188510.3390/nu1108188531412634
    [Google Scholar]
  32. BarnettJ.P. BlindauerC.A. KassaarO. KhazaipoulS. MartinE.M. SadlerP.J. StewartA.J. Allosteric modulation of zinc speciation by fatty acids.Biochim. Biophys. Acta20131830125456546410.1016/j.bbagen.2013.05.02823726993
    [Google Scholar]
  33. CostelloL.C. FenselauC.C. FranklinR.B. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells.J. Inorg. Biochem.2011105558959910.1016/j.jinorgbio.2011.02.00221440525
    [Google Scholar]
  34. RuktanonchaiD. LoweM. NortonS.A. GarretT. SoghierL. WeissE. HatfieldJ. LapinskiJ. AbramsS. BarfieldW. Zinc deficiency-associated dermatitis in infants during a nationwide shortage of injectable zinc - Washington, DC, and Houston, Texas, 2012-2013.MMWR Morb. Mortal. Wkly. Rep.2014632353724430099
    [Google Scholar]
  35. LeeS.R. NohS.J. ProntoJ.R. JeongY.J. KimH.K. SongI.S. XuZ. KwonH.Y. KangS.C. SohnE.H. KoK.S. RheeB.D. KimN. HanJ. The critical roles of zinc: beyond impact on myocardial signaling.Korean J. Physiol. Pharmacol.201519538939910.4196/kjpp.2015.19.5.38926330751
    [Google Scholar]
  36. TuranB. FlissH. DésiletsM. Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes.Am. J. Physiol.19972725 Pt 2H2095H21069176274
    [Google Scholar]
  37. ChenB. YuP. ChanW.N. XieF. ZhangY. LiangL. LeungK.T. LoK.W. YuJ. TseG.M.K. KangW. ToK.F. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets.Signal Transduct. Target. Ther.202491610.1038/s41392‑023‑01679‑y38169461
    [Google Scholar]
  38. SzadkowskaI. KostkaT. WlazełR.N. KrocŁ. JegierA. GuligowskaA. Dietary zinc is associated with cardiac function in the older adult population.Antioxidants202312226510.3390/antiox1202026536829824
    [Google Scholar]
  39. WillekensJ. RunnelsL.W. Impact of zinc transport mechanisms on embryonic and brain development.Nutrients20221412252610.3390/nu1412252635745255
    [Google Scholar]
  40. KambeT. Yamaguchi-IwaiY. SasakiR. NagaoM. Overview of mammalian zinc transporters.Cell. Mol. Life Sci.2004611496810.1007/s00018‑003‑3148‑y14704853
    [Google Scholar]
  41. KocyłaA. TranJ.B. KrężelA. Galvanization of protein–protein interactions in a dynamic zinc interactome.Trends Biochem. Sci.2021461647910.1016/j.tibs.2020.08.01132958327
    [Google Scholar]
  42. LundinK.K. QadeerY.K. WangZ. ViraniS. LeischikR. LavieC.J. StraussM. KrittanawongC. Contaminant metals and cardiovascular health.J. Cardiovasc. Dev. Dis.2023101145010.3390/jcdd1011045037998508
    [Google Scholar]
  43. CorteseM.M. SuschekC.V. WetzelW. KrönckeK.D. Kolb-BachofenV. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis.Free Radic. Biol. Med.200844122002201210.1016/j.freeradbiomed.2008.02.01318355458
    [Google Scholar]
  44. WangH. LiB. AshaK. PangilinanR.L. ThuraisamyA. ChopraH. RokudaiS. YuY. PrivesC.L. ZhuY. The ion channel TRPM7 regulates zinc-depletion-induced MDMX degradation.J. Biol. Chem.2021297510129210.1016/j.jbc.2021.10129234627839
    [Google Scholar]
  45. LiuS. WangN. LongY. WuZ. ZhouS. Zinc homeostasis: An emerging therapeutic target for neuroinflammation related diseases.Biomolecules202313341610.3390/biom1303041636979351
    [Google Scholar]
  46. DegirmenciS. OlgarY. DurakA. TuncayE. TuranB. Cytosolic increased labile Zn2+ contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion.J. Trace Elem. Med. Biol.20184820221210.1016/j.jtemb.2018.04.01429773183
    [Google Scholar]
  47. HussainA. JiangW. WangX. ShahidS. SabaN. AhmadM. DarA. MasoodS.U. ImranM. MustafaA. Mechanistic impact of zinc deficiency in human development.Front. Nutr.2022971706410.3389/fnut.2022.71706435356730
    [Google Scholar]
  48. MiyataS. Zinc deficiency in the elderly.Jpn. J. Geriatr.200744667768918200755
    [Google Scholar]
  49. WyllieR. Pediatric gastrointestinal and liver disease.Elsevier Inc2021
    [Google Scholar]
  50. MahajanS.K. Zinc in kidney disease.J. Am. Coll. Nutr.19898429630410.1080/07315724.1989.107203052674256
    [Google Scholar]
  51. CousinsR.J. Gastrointestinal factors influencing zinc absorption and homeostasis.Int. J. Vitam. Nutr. Res.2010804524324810.1024/0300‑9831/a00003021462106
    [Google Scholar]
  52. PlumL.M. RinkL. HaaseH. The essential toxin: Impact of zinc on human health.Int. J. Environ. Res. Public Health2010741342136510.3390/ijerph704134220617034
    [Google Scholar]
  53. LeeS.R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems.Oxid. Med. Cell. Longev.2018201811110.1155/2018/915628529743987
    [Google Scholar]
  54. VisentinS. ZazaA. FerroniA. TrombaC. DiFrancescoC. Sodium current block caused by group IIb cations in calf Purkinje fibres and in guinea-pig ventricular myocytes.Pflugers Arch.1990417221322210.1007/BF003707021964724
    [Google Scholar]
  55. PlatonovP.G. McNittS. PolonskyB. RoseroS.Z. ZarebaW. Atrial fibrillation in long QT syndrome by genotype.Circ. Arrhythm. Electrophysiol.20191210e00721310.1161/CIRCEP.119.00721331610692
    [Google Scholar]
  56. JeevaratnamK. ChaddaK.R. HuangC.L. CammA.J. Cardiac potassium channels: Physiological insights for targeted therapy.J. Cardiovasc. Pharmacol. Ther.201823211912910.1177/107424841772988028946759
    [Google Scholar]
  57. ZhangX. BursulayaB. LeeC.C. ChenB. PivaroffK. JeglaT. Divalent cations slow activation of EAG family K+ channels through direct binding to S4.Biophys. J.200997111012010.1016/j.bpj.2009.04.03219580749
    [Google Scholar]
  58. BechardE. BrideJ. Le GuennecJ.Y. BretteF. DemionM. TREK-1 in the heart: Potential physiological and pathophysiological roles.Front. Physiol.202213109510210.3389/fphys.2022.109510236620226
    [Google Scholar]
  59. RinnéS. KiperA.K. SchlichthörlG. DittmannS. NetterM.F. LimbergS.H. SilbernagelN. ZuzarteM. MoosdorfR. WulfH. Schulze-BahrE. RolfesC. DecherN. TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes.J. Mol. Cell. Cardiol.201581718010.1016/j.yjmcc.2015.01.01725655935
    [Google Scholar]
  60. GrussM. MathieA. LiebW.R. FranksN.P. The two-pore-domain K(+) channels TREK-1 and TASK-3 are differentially modulated by copper and zinc.Mol. Pharmacol.200466353053715322244
    [Google Scholar]
  61. KaneG. LiuX. YamadaS. OlsonT. TerzicA. Cardiac K channels in health and disease.J. Mol. Cell. Cardiol.200538693794310.1016/j.yjmcc.2005.02.02615910878
    [Google Scholar]
  62. PriestB.T. McDermottJ.S. Cardiac ion channels.Channels20159635235910.1080/19336950.2015.107659726556552
    [Google Scholar]
  63. Alvarez-CollazoJ. Díaz-GarcíaC.M. López-MedinaA.I. VassortG. AlvarezJ.L. Zinc modulation of basal and β-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: Consequences in cardiac diseases.Pflugers Arch.2012464545947010.1007/s00424‑012‑1162‑323007464
    [Google Scholar]
  64. WoodierJ. RainbowR.D. StewartA.J. PittS.J. Intracellular zinc modulates cardiac ryanodine receptor-mediated calcium release.J. Biol. Chem.201529028175991761010.1074/jbc.M115.66128026041778
    [Google Scholar]
  65. YiT. VickJ.S. VecchioM.J. BeginK.J. BellS.P. DelayR.J. PalmerB.M. Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes.Am. J. Physiol. Heart Circ. Physiol.20133055H706H71510.1152/ajpheart.00025.201323812383
    [Google Scholar]
  66. YiT. CheemaY. TrembleS.M. BellS.P. ChenZ. SubramanianM. LeWinterM.M. VanBurenP. PalmerB.M. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform.Cardiovasc. Diabetol.201211113510.1186/1475‑2840‑11‑13523116444
    [Google Scholar]
  67. LevyS. BeharierO. EtzionY. MorM. BuzagloL. ShaltielL. GheberL.A. KahnJ. MuslinA.J. KatzA. GitlerD. MoranA. Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels.J. Biol. Chem.200928447324343244310.1074/jbc.M109.05884219767393
    [Google Scholar]
  68. López-RamírezO. González-GarridoA. The role of acid sensing ion channels in the cardiovascular function.Front. Physiol.202314119494810.3389/fphys.2023.119494837389121
    [Google Scholar]
  69. CarattinoM.D. MontalbettiN. Acid-sensing ion channels in sensory signaling.Am. J. Physiol. Renal Physiol.20203183F531F54310.1152/ajprenal.00546.201931984789
    [Google Scholar]
  70. TanZ.Y. LuY. WhiteisC.A. BensonC.J. ChapleauM.W. AbboudF.M. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.Circ. Res.2007101101009101910.1161/CIRCRESAHA.107.15437717872465
    [Google Scholar]
  71. ChengY.R. JiangB.Y. ChenC.C. Acid-sensing ion channels: Dual function proteins for chemo-sensing and mechano-sensing.J. Biomed. Sci.20182514610.1186/s12929‑018‑0448‑y29793480
    [Google Scholar]
  72. SutherlandS.P. BensonC.J. AdelmanJ.P. McCleskeyE.W. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons.Proc. Natl. Acad. Sci. USA200198271171610.1073/pnas.98.2.71111120882
    [Google Scholar]
  73. SunA.W. WuM.H. VijayalingamM. WackerM.J. ChuX.P. The role of zinc in modulating acid-sensing ion channel function.Biomolecules202313222910.3390/biom1302022936830598
    [Google Scholar]
  74. JiangQ. ZhaX.M. ChuX.P. Inhibition of human acid-sensing ion channel 1b by zinc.Int. J. Physiol. Pathophysiol. Pharmacol.201242849322837807
    [Google Scholar]
  75. van der WegK. PrinzenF.W. GorgelsA.P. Reperfusion cardiac arrhythmias and their relation to reperfusion-induced cell death.Eur. Heart J. Acute Cardiovasc. Care20198214215210.1177/204887261881214830421619
    [Google Scholar]
  76. BaronA. SchaeferL. LinguegliaE. ChampignyG. LazdunskiM. Zn2+ and H+ are coactivators of acid-sensing ion channels.J. Biol. Chem.200127638353613536710.1074/jbc.M10520820011457851
    [Google Scholar]
  77. JiangQ. PapasianC.J. WangJ.Q. XiongZ.G. ChuX.P. Inhibitory regulation of acid-sensing ion channel 3 by zinc.Neuroscience2010169257458310.1016/j.neuroscience.2010.05.04320580786
    [Google Scholar]
  78. LiX. AlvarezB. CaseyJ.R. ReithmeierR.A. FliegelL. Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger.J. Biol. Chem.200227739360853609110.1074/jbc.M11195220012138085
    [Google Scholar]
  79. LionettoM. CaricatoR. GiordanoM. SchettinoT. The complex relationship between metals and carbonic anhydrase: New insights and perspectives.Int. J. Mol. Sci.201617112710.3390/ijms1701012726797606
    [Google Scholar]
  80. FengH.Z. JinJ.P. Transgenic expression of carbonic anhydrase III in cardiac muscle demonstrates a mechanism to tolerate acidosis.Am. J. Physiol. Cell Physiol.20193175C922C93110.1152/ajpcell.00130.201931390226
    [Google Scholar]
  81. NisbetA.M. BurtonF.L. WalkerN.L. CraigM.A. ChengH. HancoxJ.C. OrchardC.H. SmithG.L. Acidosis slows electrical conduction through the atrio-ventricular node.Front. Physiol.2014523310.3389/fphys.2014.0023325009505
    [Google Scholar]
  82. KillileaD.W. KillileaA.N. Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation.Free Radic. Biol. Med.202218218219110.1016/j.freeradbiomed.2022.02.02235218912
    [Google Scholar]
  83. BrownA.M. KristalB.S. EffronM.S. ShestopalovA.I. UllucciP.A. SheuK.F. BlassJ.P. CooperA.J. Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex.J. Biol. Chem.200027518134411344710.1074/jbc.275.18.1344110788456
    [Google Scholar]
  84. MillsD.A. SchmidtB. HiserC. WestleyE. Ferguson-MillerS. Membrane potential-controlled inhibition of cytochrome c oxidase by zinc.J. Biol. Chem.200227717148941490110.1074/jbc.M11192220011832490
    [Google Scholar]
  85. MaackC. O’RourkeB. Excitation-contraction coupling and mitochondrial energetics.Basic Res. Cardiol.2007102536939210.1007/s00395‑007‑0666‑z17657400
    [Google Scholar]
  86. JeongE.M. LiuM. SturdyM. GaoG. VargheseS.T. SovariA.A. DudleyS.C. Metabolic stress, reactive oxygen species, and arrhythmia.J. Mol. Cell. Cardiol.201252245446310.1016/j.yjmcc.2011.09.01821978629
    [Google Scholar]
  87. HundT.J. RudyY. A role for calcium/calmodulin-dependent protein kinase II in cardiac disease and arrhythmia.Handb. Exp. Pharmacol.200617117120122010.1007/3‑540‑29715‑4_716610345
    [Google Scholar]
  88. BersD.M. GrandiE. Calcium/calmodulin-dependent kinase II regulation of cardiac ion channels.J. Cardiovasc. Pharmacol.200954318018710.1097/FJC.0b013e3181a2507819333131
    [Google Scholar]
  89. LiuN. RuanY. DenegriM. BachettiT. LiY. ColombiB. NapolitanoC. CoetzeeW.A. PrioriS.G. Calmodulin kinase II inhibition prevents arrhythmias in RyR2R4496C+/− mice with catecholaminergic polymorphic ventricular tachycardia.J. Mol. Cell. Cardiol.201150121422210.1016/j.yjmcc.2010.10.00120937285
    [Google Scholar]
  90. HoekerG.S. HanafyM.A. OsterR.A. BersD.M. PogwizdS.M. Reduced arrhythmia inducibility with calcium/calmodulin-dependent protein kinase II inhibition in heart failure rabbits.J. Cardiovasc. Pharmacol.201667326026510.1097/FJC.000000000000034326650851
    [Google Scholar]
  91. MustrophJ. DrzymalskiM. BaierM. PabelS. BiedermannA. MemmelB. DurczokM. NeefS. SagC.M. FloerchingerB. RupprechtL. SchmidC. ZausigY. BégisG. BriandV. OzouxM.L. TamarelleD. BalletV. JaniakP. BeauvergerP. MaierL.S. WagnerS. The oral Ca/calmodulin‐dependent kinase II inhibitor RA608 improves contractile function and prevents arrhythmias in heart failure.ESC Heart Fail.2020752871288310.1002/ehf2.1289532691522
    [Google Scholar]
  92. BlayneyL.M. LaiF.A. Ryanodine receptor-mediated arrhythmias and sudden cardiac death.Pharmacol. Ther.2009123215117710.1016/j.pharmthera.2009.03.00619345240
    [Google Scholar]
  93. McCauleyM.D. WehrensX.H. Targeting ryanodine receptors for anti-arrhythmic therapy.Acta Pharmacol. Sin.201132674975710.1038/aps.2011.4421642946
    [Google Scholar]
  94. GeorgeC.H. JundiH. ThomasN.L. FryD.L. LaiF.A. Ryanodine receptors and ventricular arrhythmias: Emerging trends in mutations, mechanisms and therapies.J. Mol. Cell. Cardiol.2007421345010.1016/j.yjmcc.2006.08.11517081562
    [Google Scholar]
  95. BychkovR. PieperK. RiedC. MiloshevaM. BychkovE. LuftF.C. HallerH. Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells.Circulation199999131719172510.1161/01.CIR.99.13.171910190882
    [Google Scholar]
  96. SongY. ShryockJ.C. WagnerS. MaierL.S. BelardinelliL. Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction.J. Pharmacol. Exp. Ther.2006318121422210.1124/jpet.106.10183216565163
    [Google Scholar]
  97. MaJ. LuoA. ZhangP. Effect of hydrogen peroxide on persistent sodium current in guinea pig ventricular myocytes1.Acta Pharmacol. Sin.200526782883410.1111/j.1745‑7254.2005.00154.x15960889
    [Google Scholar]
  98. OverendC.L. EisnerD.A. O’NeillS.C. Altered cardiac sarcoplasmic reticulum function of intact myocytes of rat ventricle during metabolic inhibition.Circ. Res.200188218118710.1161/01.RES.88.2.18111157670
    [Google Scholar]
  99. SilvermanH.S. SternM.D. Ionic basis of ischaemic cardiac injury: Insights from cellular studies.Cardiovasc. Res.199428558159710.1093/cvr/28.5.5818025901
    [Google Scholar]
  100. MarreiroD. CruzK. MoraisJ. BeserraJ. SeveroJ. De OliveiraA. Zinc and oxidative stress: Current mechanisms.Antioxidants2017622410.3390/antiox602002428353636
    [Google Scholar]
  101. OteizaP.I. Zinc and the modulation of redox homeostasis.Free Radic. Biol. Med.20125391748175910.1016/j.freeradbiomed.2012.08.56822960578
    [Google Scholar]
  102. Korkmaz-IcözS. AtmanliA. RadovitsT. LiS. HegedüsP. RuppertM. BrlecicP. YoshikawaY. YasuiH. KarckM. SzabóG. Administration of zinc complex of acetylsalicylic acid after the onset of myocardial injury protects the heart by upregulation of antioxidant enzymes.J. Physiol. Sci.201666211312510.1007/s12576‑015‑0403‑626497333
    [Google Scholar]
  103. LiH.T. JiaoM. ChenJ. LiangY. Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase.Acta Biochim. Biophys. Sin.201042318319410.1093/abbs/gmq00520213043
    [Google Scholar]
  104. TateD.J. MiceliM.V. NewsomeD.A. Zinc induces catalase expression in cultured fetal human retinal pigment epithelial cells.Curr. Eye Res.199716101017102310.1076/ceyr.16.10.1017.90119330853
    [Google Scholar]
  105. JaroszM. OlbertM. WyszogrodzkaG. MłyniecK. LibrowskiT. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling.Inflammopharmacology2017251112410.1007/s10787‑017‑0309‑428083748
    [Google Scholar]
  106. YangK.C. BoniniM.G. DudleyS.C. Mitochondria and arrhythmias.Free Radic. Biol. Med.20147135136110.1016/j.freeradbiomed.2014.03.03324713422
    [Google Scholar]
  107. ZechA.T. SinghS.R. SchlossarekS. CarrierL. Autophagy in cardiomyopathies.Biochim. Biophys. Acta Mol. Cell Res.20201867311843210.1016/j.bbamcr.2019.01.01330831130
    [Google Scholar]
  108. LiuzziJ.P. PazosR. Interplay between autophagy and zinc.J. Trace Elem. Med. Biol.20206212663610.1016/j.jtemb.2020.12663632957075
    [Google Scholar]
  109. BrownD.A. O’RourkeB. Cardiac mitochondria and arrhythmias.Cardiovasc. Res.201088224124910.1093/cvr/cvq23120621924
    [Google Scholar]
  110. BianX. TengT. ZhaoH. QinJ. QiaoZ. SunY. LiunZ. XuZ. Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells.Free Radic. Res.2018521809110.1080/10715762.2017.141494929216769
    [Google Scholar]
  111. LiuzziJ.P. GuoL. YooC. StewartT.S. Zinc and autophagy.Biometals20142761087109610.1007/s10534‑014‑9773‑025012760
    [Google Scholar]
  112. PickrellA.M. YouleR.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease.Neuron201585225727310.1016/j.neuron.2014.12.00725611507
    [Google Scholar]
  113. McWilliamsT.G. MuqitM.M. PINK1 and Parkin: Emerging themes in mitochondrial homeostasis.Curr. Opin. Cell Biol.201745839110.1016/j.ceb.2017.03.01328437683
    [Google Scholar]
  114. FritschL.E. MooreM.E. SarrafS.A. PickrellA.M. Ubiquitin and receptor-dependent mitophagy pathways and their implication in neurodegeneration.J. Mol. Biol.202043282510252410.1016/j.jmb.2019.10.01531689437
    [Google Scholar]
  115. KimB.W. KwonD.H. SongH.K. Structure biology of selective autophagy receptors.BMB Rep.2016492738010.5483/BMBRep.2016.49.2.26526698872
    [Google Scholar]
  116. LinS. TianH. LinJ. XuC. YuanY. GaoS. SongC. LvP. MeiX. Zinc promotes autophagy and inhibits apoptosis through AMPK/mTOR signaling pathway after spinal cord injury.Neurosci. Lett.202073613526310.1016/j.neulet.2020.13526332682846
    [Google Scholar]
  117. LiX.C. ZengY. SunR.R. LiuM. ChenS. ZhangP.Y. SUMOylation in cardiac disorders - a review.Eur. Rev. Med. Pharmacol. Sci.20172171583158728429347
    [Google Scholar]
  118. AliabadiF. SohrabiB. MostafaviE. Pazoki-ToroudiH. WebsterT.J. Ubiquitin–proteasome system and the role of its inhibitors in cancer therapy.Open Biol.202111420039010.1098/rsob.20039033906413
    [Google Scholar]
  119. ParkG.H. ParkJ.H. ChungK.C. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson’s disease.BMB Rep.2021541259260010.5483/BMBRep.2021.54.12.10734674795
    [Google Scholar]
  120. WuW. WangX. ZhangW. ReedW. SametJ.M. WhangY.E. GhioA.J. Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells.J. Biol. Chem.200327830282582826310.1074/jbc.M30331820012743124
    [Google Scholar]
  121. LeeD. TakayamaS. GoldbergA.L. ZFAND5/ZNF216 is an activator of the 26S proteasome that stimulates overall protein degradation.Proc. Natl. Acad. Sci. USA201811541E9550E955910.1073/pnas.180993411530254168
    [Google Scholar]
  122. Bou-TeenD. KaludercicN. WeissmanD. TuranB. MaackC. Di LisaF. Ruiz-MeanaM. Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart.Free Radic. Biol. Med.202116710912410.1016/j.freeradbiomed.2021.02.04333716106
    [Google Scholar]
  123. Ruiz-MeanaM. Bou-TeenD. FerdinandyP. GyongyosiM. PesceM. PerrinoC. SchulzR. SluijterJ.P. TocchettiC.G. ThumT. MadonnaR. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function.Cardiovasc. Res.2020116111835184910.1093/cvr/cvaa13232384145
    [Google Scholar]
  124. HatchF. LancasterM.K. JonesS.A. Aging is a primary risk factor for cardiac arrhythmias: Disruption of intracellular Ca 2+ regulation as a key suspect.Expert Rev. Cardiovasc. Ther.2011981059106710.1586/erc.11.11221878050
    [Google Scholar]
  125. OlgarY. BillurD. TuncayE. TuranB. MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species.Exp. Gerontol.202013611096110.1016/j.exger.2020.11096132325093
    [Google Scholar]
  126. HaradaM. Van WagonerD.R. NattelS. Role of inflammation in atrial fibrillation pathophysiology and management.Circ. J.201579349550210.1253/circj.CJ‑15‑013825746525
    [Google Scholar]
  127. GuoY. LipG.Y. ApostolakisS. Inflammation in atrial fibrillation.J. Am. Coll. Cardiol.201260222263227010.1016/j.jacc.2012.04.06323194937
    [Google Scholar]
  128. ZhouX. DudleyS.C. Evidence for inflammation as a driver of atrial fibrillation.Front. Cardiovasc. Med.202076210.3389/fcvm.2020.0006232411723
    [Google Scholar]
  129. VonderlinN. SiebermairJ. KayaE. KöhlerM. RassafT. WakiliR. Critical inflammatory mechanisms underlying arrhythmias.Herz201944212112910.1007/s00059‑019‑4788‑530729269
    [Google Scholar]
  130. GammohN. RinkL. Zinc in infection and inflammation.Nutrients20179662410.3390/nu906062428629136
    [Google Scholar]
  131. ShangL.L. SanyalS. PfahnlA.E. JiaoZ. AllenJ. LiuH. DudleyS.C. NF-κB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II.Am. J. Physiol. Cell Physiol.20082941C372C37910.1152/ajpcell.00186.200718032528
    [Google Scholar]
  132. OlechnowiczJ. TinkovA. SkalnyA. SuliburskaJ. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism.J. Physiol. Sci.2018681193110.1007/s12576‑017‑0571‑728965330
    [Google Scholar]
  133. ScottL. LiN. DobrevD. Role of inflammatory signaling in atrial fibrillation.Int. J. Cardiol.201928719520010.1016/j.ijcard.2018.10.02030316645
    [Google Scholar]
  134. RenM. LiX. HaoL. ZhongJ. Role of tumor necrosis factor alpha in the pathogenesis of atrial fibrillation: A novel potential therapeutic target?Ann. Med.201547431632410.3109/07853890.2015.104203025982799
    [Google Scholar]
  135. LiewR. KhairunnisaK. GuY. TeeN. YinN.O. NaylynnT.M. MoeK.T. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate.Circ. J.20137751171117910.1253/circj.CJ‑12‑115523370453
    [Google Scholar]
  136. JungS. KimM.K. ChoiB.Y. The relationship between zinc status and inflammatory marker levels in rural korean adults aged 40 and older.PLoS One2015106e013001610.1371/journal.pone.013001626080030
    [Google Scholar]
  137. AcampaM. LazzeriniP.E. GuideriF. TassiR. Lo MonacoA. MartiniG. Inflammation and atrial electrical remodelling in patients with embolic strokes of undetermined source.Heart Lung Circ.201928691792210.1016/j.hlc.2018.04.29429887417
    [Google Scholar]
  138. BlevinsH.M. XuY. BibyS. ZhangS. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases.Front. Aging Neurosci.20221487902110.3389/fnagi.2022.87902135754962
    [Google Scholar]
  139. ZhangQ. WangL. WangS. ChengH. XuL. PeiG. WangY. FuC. JiangY. HeC. WeiQ. Signaling pathways and targeted therapy for myocardial infarction.Signal Transduct. Target. Ther.2022717810.1038/s41392‑022‑00925‑z35273164
    [Google Scholar]
  140. FaghfouriA.H. BaradaranB. KhabbaziA. Abdoli ShadbadM. PapiS. FaghfuriE. KhajebishakY. RahmaniS. Tolou HayatP. AlipourB. Regulation of NLRP3 inflammasome by zinc supplementation in Behçet’s disease patients: A double-blind, randomized placebo-controlled clinical trial.Int. Immunopharmacol.202210910882510.1016/j.intimp.2022.10882535561480
    [Google Scholar]
  141. ChowdhuryD. GardnerJ.C. SatpatiA. NookalaS. MukundanS. PorolloA. Landero FigueroaJ.A. Subramanian VigneshK. Metallothionein 3-zinc axis suppresses caspase-11 inflammasome activation and impairs antibacterial immunity.Front. Immunol.20211275596110.3389/fimmu.2021.75596134867993
    [Google Scholar]
  142. Ben AbdallahS. MhallaY. TrabelsiI. SekmaA. YoussefR. Bel Haj AliK. Ben SoltaneH. YacoubiH. MsolliM.A. StambouliN. BeltaiefK. GrissaM.H. KhroufM. MezgarZ. LoussaiefC. BouidaW. RazgallahR. HezbriK. BelguithA. BelkacemN. DridiZ. BoubakerH. BoukefR. NouiraS. Twice-daily oral zinc in the treatment of patients with coronavirus disease 2019: A randomized double-blind controlled trial.Clin. Infect. Dis.202376218519110.1093/cid/ciac80736367144
    [Google Scholar]
  143. FiroozA. KhatamiA. KhamesipourA. Nassiri-KashaniM. BehniaF. NilforoushzadehM. Pazoki-ToroudiH. DowlatiY. Intralesional injection of 2% zinc sulfate solution in the treatment of acute old world cutaneous leishmaniasis: a randomized, double-blind, controlled clinical trial.J. Drugs Dermatol.200541737915696988
    [Google Scholar]
  144. SousaM.G. CararetoR. SilvaJ.G. OliveiraJ. Assessment of the electrocardiogram in dogs with visceral leishmaniasis.Pesqui. Vet. Bras.201333564364710.1590/S0100‑736X2013000500015
    [Google Scholar]
  145. Subramanian VigneshK. DeepeG. Metallothioneins: Emerging modulators in immunity and infection.Int. J. Mol. Sci.20171810219710.3390/ijms1810219729065550
    [Google Scholar]
  146. DaiH. WangL. LiL. HuangZ. YeL. Metallothionein 1: A new spotlight on inflammatory diseases.Front. Immunol.20211273991810.3389/fimmu.2021.73991834804020
    [Google Scholar]
  147. DegauteJ.P. van de BorneP. LinkowskiP. Van CauterE. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men.Hypertension199118219921010.1161/01.HYP.18.2.1991885228
    [Google Scholar]
  148. BlackN. D’SouzaA. WangY. PigginsH. DobrzynskiH. MorrisG. BoyettM.R. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms.Heart Rhythm201916229830710.1016/j.hrthm.2018.08.02630170229
    [Google Scholar]
  149. BernardiJ. AromolaranK.A. ZhuH. AromolaranA.S. Circadian mechanisms: Cardiac ion channel remodeling and arrhythmias.Front. Physiol.20211161186010.3389/fphys.2020.61186033519516
    [Google Scholar]
  150. MoshirpourM. NakashimaA.S. SehnN. SmithV.M. ThackrayS.E. DyckR.H. AntleM.C. Examination of zinc in the circadian system.Neuroscience2020432152910.1016/j.neuroscience.2020.02.01632087262
    [Google Scholar]
  151. YuF. LuoH.R. CuiX.F. WuY.J. LiJ.L. FengW.R. TangY.K. SuS.Y. XiaoJ. HouZ.S. XuP. Changes in aggression and locomotor behaviors in response to zinc is accompanied by brain cell heterogeneity and metabolic and circadian dysregulation of the brain-liver axis.Ecotoxicol. Environ. Saf.202224811430310.1016/j.ecoenv.2022.11430336403304
    [Google Scholar]
  152. FredericksonC.J. KohJ.Y. BushA.I. The neurobiology of zinc in health and disease.Nat. Rev. Neurosci.20056644946210.1038/nrn167115891778
    [Google Scholar]
  153. MocchegianiE. SantarelliL. TibaldiA. MuzzioliM. BulianD. CiprianoK. OlivieriF. FabrisN. Presence of links between zinc and melatonin during the circadian cycle in old mice: effects on thymic endocrine activity and on the survival.J. Neuroimmunol.199886211112210.1016/S0165‑5728(97)00253‑19663556
    [Google Scholar]
  154. CherasseY. UradeY. Dietary zinc acts as a sleep modulator.Int. J. Mol. Sci.20171811233410.3390/ijms1811233429113075
    [Google Scholar]
  155. LiG. DongZ. HuangH. ZhangY. WanD. WuX. YinY. Effects of diet zinc level on circadian rhythms and lipid metabolism in male mice.Biol. Rhythm Res.202051220421210.1080/09291016.2018.1526498
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X299868240904120621
Loading
/content/journals/ccr/10.2174/011573403X299868240904120621
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): arrhythmia; ATP levels; heavy metal; ion channels; trace elements; Zinc
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test