- Home
- A-Z Publications
- Combinatorial Chemistry & High Throughput Screening
- Previous Issues
- Volume 4, Issue 2, 2001
Combinatorial Chemistry & High Throughput Screening - Volume 4, Issue 2, 2001
Volume 4, Issue 2, 2001
-
-
Alternative Bacteriophage Display Systems
Authors: L. Castagnoli, A. Zuccconi, M. Quondam, M. Rossi, P. Vaccaro, S. Panni, S. Paoluzi, E. Santonico, L. dente and G. CesareniFilamentous phage has been extensively used to implement various aspects of phage display technology. The success of these organisms as vectors to present foreign peptides and to link them to their coding sequences is a consequence of their structural and biological characteristics. Some of these properties, however, represent a limitation when one attempts to display proteins that cannot be efficiently exported through the bacterial membrane or do not fold properly in the periplasm. Thus, the desirability of developing alternative display systems was recognised recently and led to the development of a different class of display vectors that assemble their capsid in the cytoplasm and are released via cell lysis. This review describes and compares the properties of these alternative display systems.
-
-
-
Shotgun Phage Display Cloning
Authors: K. Jacobsson and L. FrykbergShotgun phage display cloning is a useful tool for studying interactions between bacterial and host proteins. Libraries are constructed by cloning randomly fragmented prokaryotic DNA into phagemid-vectors. Theoretically, these libraries will consist of phages that together display all proteins encoded by the bacterial genome. Selecting a gene III-based library, made from Staphylococcus aureus DNA, against IgG and fibronectin resulted in 20-40 percent positive clones after two pannings. Increasing the number of fusion proteins per phage particle by using gene VIII-based display, increased the frequency of correct clones to 75-100 percent
-
-
-
The Powerful Combination of Phage Surface Display of cDNA Libraries and High Throughput Screening
Authors: R. Crameri and R. KodziusPhage surface display of cDNA libraries facilitates cloning, expression and rapid selection of functional gene products physically linked to their genetic information through gene product-ligand interactions. Efficient screening technologies based on selective enrichment of clones expressing desired gene products allows, within a short time, the isolation of all ligand-specific clones that are present in a library. Manual identification of clones by restriction analysis and random sequencing is unlike to be successful for the isolation of gene products derived from rare mRNA species resulting from selection of the libraries using polyvalent ligands like serum from patients. Here we describe rapid handling of large numbers of individual clones selected from molecular libraries displayed on phage surface using the power of robotics-based high throughput screening. The potential of the combination of cDNA-phage surface display, with selection for specific interactions by functional screening and robotic technology is illustrated by the isolation of more sequences potentially encoding IgE-binding proteins than postulated from Western blot analyses using extracts derived from raw material of complex allergenic sources. The subsequent application of functional enrichment and robotics-based screening will facilitate the rapid generation of information about the repertoire of protein structures involved in allergic diseases.
-
-
-
Peptide Display in Functional Genomics
By I. FischThe completion of the human genome project has opened novel scientific avenues in functional genomics, structural genomics and proteomics. These areas have a common goal: the identification of all the proteins acting and cross-talking in a single cell at a defined moment of its lifecycle. The expansion of these areas in bioscience has been facilitated by the rapid development of high throughput screening (HTS) methods which has, in turn, attracted the business community to make investments in this novel business segment of biotechnology. By using these HTS methods, the hope is that novel targets will be validated much more rapidly speeding up the development of novel drugs. Numerous techniques and tools have emerged over the past decade for the identification of small target-specific molecular ligands that exploit a common feature: the exploration of molecular diversity using combinatorial methods. While chemists developed new methods for rapidly and efficiently synthesising and screening large collections of small molecules, biologists used recombinant DNA techniques for selecting displayed repertoires. To this end, the discovery of new low molecular weight peptides is becoming increasingly important, not only as molecular tools for the understanding of protein-protein interactions but also for the generation of lead compounds.
-
-
-
Surface Display on Gram Positive Bacteria
Authors: M. Hansson, P. Samuelson, E. Gunneriusso and S. StahlHeterologous surface display on Gram-positive bacteria was first described almost a decade ago and has since then developed into an active research area. Gram-positive bacterial surface display has today found a range of applications, in immunology, microbiology and biotechnology. Live bacterial vaccine delivery vehicles are being developed through the surface display of selected foreign antigens on the bacterial surfaces. In this field, "second generation" vaccine delivery vehicles are at present being generated by the addition of mucosal targeting signals through co-display of adhesins, in order to achieve targeting of the live bacteria to immunoreactive sites to thereby increase immune responses. Engineered Gram-positive bacteria are further being evaluated as novel microbial biocatalysts with heterologous enzymes immobilized as surface exposed on the bacterial cell surface. A discussion has started whether bacteria can find use as new types of whole-cell diagnostic devices since single-chain antibodies and other variants of tailor-made binding proteins can be displayed on bacteria. Bacteria with increased binding capacity for certain metal ions can be created and potential environmental or biosensor applications for such recombinant bacteria as biosorbents are being discussed. This article explains the basis of Gram-positive bacterial surface display, and discusses current uses and possible future trends of this emerging technology.
-
-
-
The Baculovirus Expression System as a Tool for Generating Diversity by Viral Surface Display
Authors: R. Grabherr and W. ErnstIt has become a major goal of molecular biologists, biochemists, and immunologists to be able to modulate the structure of proteins, in order to increase their antigenicity, alter their biological properties and-or explore their function. Based on the concept of bacterial phage display, by which proteins are being selected and analyzed in conjunction with their genetic information, eukaryotic systems have been investigated for their use in generating biomolecular diversity. The advantage of posttranslational modification and the possible harbouring of structural complex proteins has lead scientists to include eukaryotic systems in the wide field of molecular design. The ideal expression vectors for surface display are eukaryotic viruses, that allow large gene insertions, efficiently present foreign proteins on the particle surface, are easy to propagate and, if possible, not pathogenic to humans. By inserting peptides into a native virus coat protein or by expressing foreign proteins as coat protein fusion proteins or linked to specific anchor domains it becomes possible to display polypeptides of interest on the surface of replicating particles. A variety of different strategies are currently under investigation in order to utilize the baculovirus insect cell expression system for efficient display on the surface of virus particles as well as on the surface of virally infected insect cells. Increasing the transfection efficiency, optimizing cloning procedures, and establishing applicable selection methods have lead to the development of a powerful tool for drug screening and ligand screening.
-
-
-
High-throughput Screening of Surface Displayed Gene Products
Authors: G. Walter, Z. Konthur and H. LehrachWith the human genome project approaching completion, there is a growing interest in functional analysis of gene products. The characterization of large numbers of proteins, their expression patterns and in vivo localisations, demands the use of automated technology that maintains a logistic link to the encoding genes. As a complementary approach, phage display is used for recombinant protein expression and the selection of interacting (binding) molecules. Cloning of libraries in filamentous bacteriophage or phagemid vectors provides a physical link between the expressed protein and its encoding DNA sequence. High-throughput technology for automated library handling and phage display selection has been developed using picking-spotting robots and a module for pin-based magnetic particle handling. This system enables simultaneous interaction screening of libraries and the selection of binders to different target molecules at high throughput. Target molecules are either displayed on high-density filter membranes (protein filters) or tag-bound to magnetic particles and can be handled as native ligands. Binding activity is confirmed by magnetic particle ELISA in the microtitre format. The whole procedure from immobilisation of target molecules to confirmed clones of binders is automatable. Using this technology, we have selected human scFv antibody fragments against expression products of human cDNA libraries.
-
-
-
Peptidomics The Comprehensive Analysis of Peptides in Complex Biological Mixtures
Authors: P. Schulz-Knappe, Z. Hans-Dieter, G. Heine, M. Jurgens and M. SchraderProgress in the sequencing of genomes has resulted in an increasing demand for a functional analysis of gene products in order to understand the underlying physiology. Proteomics has established itself as a highly valuable technology for producing functionally related data in an unparalleled fashion, but is methodologically restricted to the analysis of proteins with higher molecular masses . The development of a technology which covers peptides with low molecular weight and small proteins (0.5 to 15 kDa) was necessary, since peptides, amongst them families of hormones, cytokines and growth factors, play a central role in many biological processes. To summarise the technologies used for this approach the term peptidomics is introduced. In this article, we present the rationale and first results of a novel, universal peptide display approach for the analysis and visualisation of peptides and small proteins from biological samples. Special attention is given to samples derived from extracellular fluids such as blood plasma and cerebrospinal fluid. Additionally, a high throughput identification procedure for the analysis of peptides in their native and processed molecular form is outlined.
-
Volumes & issues
-
Volume 28 (2025)
-
Volume 27 (2024)
-
Volume 26 (2023)
-
Volume 25 (2022)
-
Volume 24 (2021)
-
Volume 23 (2020)
-
Volume 22 (2019)
-
Volume 21 (2018)
-
Volume 20 (2017)
-
Volume 19 (2016)
-
Volume 18 (2015)
-
Volume 17 (2014)
-
Volume 16 (2013)
-
Volume 15 (2012)
-
Volume 14 (2011)
-
Volume 13 (2010)
-
Volume 12 (2009)
-
Volume 11 (2008)
-
Volume 10 (2007)
-
Volume 9 (2006)
-
Volume 8 (2005)
-
Volume 7 (2004)
-
Volume 6 (2003)
-
Volume 5 (2002)
-
Volume 4 (2001)
-
Volume 3 (2000)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less