Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The SARS-CoV-2 coronavirus (COVID-19) has raised innumerable global concerns, and few effective treatment strategies have yet been permitted by the FDA to lighten the disease burden. SARS-CoV-2 3C-like proteinase (3CLP) is a crucial protease and plays a key role in the viral life cycle, as it controls replication, and thus, it is viewed as a target for drug design.

Methods

In this study, we performed structure-based virtual screening of FDA drugs approved during 2015-2019 (a total of 220 drugs) for interaction with the active site of 3CLP (PDB ID 6LU7) using AutoDock 4.2. We report the top ten drugs that outperform the reported drugs against 3CLP (Elbasvir and Nelfinavir), particularly Cefiderocol, having the highest affinity among the compounds tested, with a binding energy of -9.97 kcal/mol. H-bond (LYS102:HZ2-ligand: O49), hydrophobic (ligand-VAL104), and electrostatic (LYS102:NZ-ligand: O50) interactions were observed in the cefiderocol-3CLP complex. The docked complex was subjected to a 50 ns molecular dynamics study to check its stability, and stable RMSD and RMSF graphs were observed.

Results

Accordingly, we suggest cefiderocol might be effective against SARS-CoV-2 and urge that experimental validation be performed to determine the antiviral efficacy of cefiderocol against SARS-CoV-2.

Discussion

Along with these, cefiderocol is effective for treating respiratory tract pathogens and a wide range of gram-negative bacteria for whom there are limited therapeutic alternatives.

Conclusion

This article aimed to explore the FDA-approved drugs as a repurposing study against 3CLP for COVID-19 management.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207325666220816125639
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. SheJ. JiangJ. YeL. HuL. BaiC. SongY. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies.Clin. Transl. Med.2020911910.1186/s40169‑020‑00271‑z 32078069
    [Google Scholar]
  2. BeheraB.C. MishraR.R. ThatoiH. Recent biotechnological tools for diagnosis of corona virus disease: A review.Biotechnol. Prog.2021371e307810.1002/btpr.3078 32902193
    [Google Scholar]
  3. ZhengJ. SARS-CoV-2: An emerging coronavirus that causes a global threat.Int. J. Biol. Sci.202016101678168510.7150/ijbs.45053 32226285
    [Google Scholar]
  4. Coronaviridae Study Group of the International Committee on Taxonomy of V. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2.Nat. Microbiol.20205453654410.1038/s41564‑020‑0695‑z
    [Google Scholar]
  5. GyebiG.A. OgunyemiO.M. IbrahimI.M. AfolabiS.O. AdebayoJ.O. Dual targeting of cytokine storm and viral replication in COVID-19 by plant-derived steroidal pregnanes: An in silico perspective.Comput. Biol. Med.202113410440610.1016/j.compbiomed.2021.104406 33915479
    [Google Scholar]
  6. KrouseH.J. COVID-19 and the widening gap in health inequity.Otolaryngol. Head Neck Surg.20201631656610.1177/0194599820926463 32366172
    [Google Scholar]
  7. RodgersF. PepperrellT. KeestraS. PilkingtonV. Missing clinical trial data: The evidence gap in primary data for potential COVID-19 drugs.Trials20212215910.1186/s13063‑021‑05024‑y 33451350
    [Google Scholar]
  8. OgandoN.S. FerronF. DecrolyE. CanardB. PosthumaC.C. SnijderE.J. The curious case of the nidovirus exoribonuclease: Its role in RNA synthesis and replication fidelity.Front. Microbiol.201910181310.3389/fmicb.2019.01813 31440227
    [Google Scholar]
  9. ZumlaA. ChanJ.F. AzharE.I. HuiD.S. YuenK.Y. Coronaviruses - drug discovery and therapeutic options.Nat. Rev. Drug Discov.201615532734710.1038/nrd.2015.37 26868298
    [Google Scholar]
  10. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y
    [Google Scholar]
  11. PillaiyarT. ManickamM. NamasivayamV. HayashiY. JungS.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and small molecule chemotherapy.J. Med. Chem.201659146595662810.1021/acs.jmedchem.5b01461 26878082
    [Google Scholar]
  12. ItaK. Coronavirus disease (COVID-19): Current status and prospects for drug and vaccine development.Arch. Med. Res.2021521152410.1016/j.arcmed.2020.09.010 32950264
    [Google Scholar]
  13. WangM. CaoR. ZhangL. YangX. LiuJ. XuM. ShiZ. HuZ. ZhongW. XiaoG. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.202030326927110.1038/s41422‑020‑0282‑0 32020029
    [Google Scholar]
  14. Najar NobariN. SeirafianpourF. MashayekhiF. GoodarziA. A systematic review on treatment-related mucocutaneous reactions in COVID-19 patients.Dermatol. Ther.2021341e1466210.1111/dth.14662 33301232
    [Google Scholar]
  15. NarkhedeR.R. ChekeR.S. AmbhoreJ.P. ShindeS.D. The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2.EJMO202043185195
    [Google Scholar]
  16. JoshiS. ParkarJ. AnsariA. VoraA. TalwarD. TiwaskarM. PatilS. BarkateH. Role of favipiravir in the treatment of COVID-19.Int. J. Infect. Dis.202110250150810.1016/j.ijid.2020.10.069 33130203
    [Google Scholar]
  17. ChoiJ.J. McCarthyM.W. Cefiderocol: A novel siderophore cephalosporin.Expert Opin. Investig. Drugs201827219319710.1080/13543784.2018.1426745 29318906
    [Google Scholar]
  18. NakamuraR. Ito-HoriyamaT. TakemuraM. TobaS. MatsumotoS. IkeharaT. TsujiM. SatoT. YamanoY. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models.Antimicrob. Agents Chemother.20196396310.1128/AAC.02031‑18 31262762
    [Google Scholar]
  19. ItoA. NishikawaT. MatsumotoS. YoshizawaH. SatoT. NakamuraR. TsujiM. YamanoY. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa.Antimicrob. Agents Chemother.201660127396740110.1128/AAC.01405‑16 27736756
    [Google Scholar]
  20. YamanoY. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria.Clin. Infect. Dis.201969Suppl. 7S544S55110.1093/cid/ciz827 31724049
    [Google Scholar]
  21. DrakesmithH. PrenticeA. Viral infection and iron metabolism.Nat. Rev. Microbiol.20086754155210.1038/nrmicro1930 18552864
    [Google Scholar]
  22. ReinerŽ. HatamipourM. BanachM. PirroM. Al-RasadiK. JamialahmadiT. RadenkovicD. MontecuccoF. SahebkarA. Statins and the COVID-19 main protease: in silico evidence on direct interaction.Arch. Med. Sci.202016349049610.5114/aoms.2020.94655 32399094
    [Google Scholar]
  23. YuceM. CicekE. InanT. DagA.B. KurkcuogluO. SungurF.A. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease.Proteins202189111425144110.1002/prot.26164 34169568
    [Google Scholar]
  24. RareyM. KramerB. LengauerT. KlebeG. A fast flexible docking method using an incremental construction algorithm.J. Mol. Biol.1996261347048910.1006/jmbi.1996.0477 8780787
    [Google Scholar]
  25. AhmadS.S. AkhtarS. Danish Rizvi, S.M.; Kamal, M.A.; Sayeed, U.; Khan, M.K.A.; Siddiqui, M.H.; Arif, J.M. Screening and elucidation of selected natural compounds for anti- alzheimer’s potential targeting BACE-1 enzyme: A case computational study.Curr. Computeraided Drug Des.201713431131810.2174/1573409913666170414123825 28413992
    [Google Scholar]
  26. MorrisG.M. HueyR. OlsonA.J. Using AutoDock for ligand-receptor docking.Curr. Protoc. Bioinformatics200810.1002/0471250953.bi0814s24
    [Google Scholar]
  27. MauryaD.K. SharmaD. Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach.J. Biomol. Struct. Dyn.202011610.1080/07391102.2020.1852119 33251972
    [Google Scholar]
  28. GoodsellD.S. MorrisG.M. OlsonA.J. Automated docking of flexible ligands: Applications of AutoDock.J. Mol. Recognit.1996911510.1002/(SICI)1099‑1352(199601)9:1<1:AID‑JMR241>3.0.CO;2‑6 8723313
    [Google Scholar]
  29. LiuS. DangM. LeiY. AhmadS.S. KhalidM. KamalM.A. ChenL. Ajmalicine and its analogues against AChE and BuChE for the management of Alzheimer’s disease: An in-silico study.Curr. Pharm. Des.202026374808481410.2174/1381612826666200407161842 32264807
    [Google Scholar]
  30. AhmadS.S. KhanH. Danish Rizvi, S.M.; Ansari, S.A.; Ullah, R.; Mahmood, H.M.; Siddiqui, M.H. Computational study of natural compounds for the clearance of amyloid-betaeta: A potential therapeutic management strategy for Alzheimer’s Disease.Molecules201924
    [Google Scholar]
  31. PronkS. PállS. SchulzR. LarssonP. BjelkmarP. ApostolovR. ShirtsM.R. SmithJ.C. KassonP.M. van der SpoelD. HessB. LindahlE. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit.Bioinformatics201329784585410.1093/bioinformatics/btt055 23407358
    [Google Scholar]
  32. SchüttelkopfA.W. van AaltenD.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes.Acta Crystallogr. D Biol. Crystallogr.200460Pt 81355136310.1107/S0907444904011679 15272157
    [Google Scholar]
  33. HessB. BekkerH. BerendsenH.J. FraaijeJ.G. LINCS: A linear constraint solver for molecular simulations.J. Comput. Chem.199718121463147210.1002/(SICI)1096‑987X(199709)18:12<1463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  34. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  35. GarcíaR. HussainA. KoduruP. AtisM. WilsonK. ParkJ.Y. TobyI. DiwaK. VuL. HoS. AdnanF. NguyenA. CoxA. KirtekT. GarcíaP. LiY. JonesH. ShiG. GreenA. RosenbaumD. Identification of potential antiviral compounds against SARS-CoV-2 structural and non structural protein targets: A pharmacoinformatics study of the CAS COVID-19 dataset.Comput. Biol. Med.202113310436410.1016/j.compbiomed.2021.104364 33895457
    [Google Scholar]
  36. AlamA. ShaikhS. AhmadS.S. AnsariM.A. ShakilS. RizviS.M. ShakilS. ImranM. HaneefM. AbuzenadahA.M. KamalM.A. Molecular interaction of human brain acetylcholinesterase with a natural inhibitor huperzine-B: An enzoinformatics approach.CNS Neurol. Disord. Drug Targets201413348749010.2174/18715273113126660163 24059299
    [Google Scholar]
  37. RehmanA. AkhtarS. SiddiquiM.H. SayeedU. AhmadS.S. ArifJ.M. KhanM.K. Identification of potential leads against 4-hydroxytetrahydrodipicolinate synthase from Mycobacterium tuberculosis.Bioinformation2016121140040710.6026/97320630012400 28293071
    [Google Scholar]
  38. WeissM.S. BrandlM. SühnelJ. PalD. HilgenfeldR. More hydrogen bonds for the (structural) biologist.Trends Biochem. Sci.200126952152310.1016/S0968‑0004(01)01935‑1 11551776
    [Google Scholar]
  39. AhmadS.S. SinhaM. AhmadK. KhalidM. ChoiI. Study of caspase 8 inhibition for the management of Alzheimer’s disease: A molecular docking and dynamics simulation.Molecules20202592510.3390/molecules25092071 32365525
    [Google Scholar]
  40. AhmadS.S. KhalidM. YounisK. Interaction study of dietary fibers (pectin and cellulose) with meat proteins using bioinformatics analysis: An in-silico study.Lebensm. Wiss. Technol.202011910888910.1016/j.lwt.2019.108889
    [Google Scholar]
  41. KhanM.S. GoswamiU. RojatkarS.R. KhanM.I. A serine protease inhibitor from hemolymph of green mussel, Perna viridis.Bioorg. Med. Chem. Lett.200818143963396710.1016/j.bmcl.2008.06.010 18572404
    [Google Scholar]
  42. ZhouP. YangX.L. WangX.G. HuB. ZhangL. ZhangW. SiH.R. ZhuY. LiB. HuangC.L. ChenH.D. ChenJ. LuoY. GuoH. JiangR.D. LiuM.Q. ChenY. ShenX.R. WangX. ZhengX.S. ZhaoK. ChenQ.J. DengF. LiuL.L. YanB. ZhanF.X. WangY.Y. XiaoG.F. ShiZ.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑7 32015507
    [Google Scholar]
  43. OsmanE.E.A. ToogoodP.L. NeamatiN. COVID-19: Living through another pandemic.ACS Infect. Dis.2020671548155210.1021/acsinfecdis.0c00224 32388976
    [Google Scholar]
  44. GlebovO.O. Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing.FEBS J.2020287173664367110.1111/febs.15369 32428379
    [Google Scholar]
  45. YousefiH. MashouriL. OkpechiS.C. AlahariN. AlahariS.K. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action.Biochem. Pharmacol.202118311429610.1016/j.bcp.2020.114296 33191206
    [Google Scholar]
  46. SinghT.U. ParidaS. LingarajuM.C. KesavanM. KumarD. SinghR.K. Drug repurposing approach to fight COVID-19.Pharmacol. Rep.20207261479150810.1007/s43440‑020‑00155‑6 32889701
    [Google Scholar]
  47. MozaB. BuonpaneR.A. ZhuP. HerfstC.A. RahmanA.K. McCormickJ.K. KranzD.M. SundbergE.J. Long-range cooperative binding effects in a T cell receptor variable domain.Proc. Natl. Acad. Sci. USA2006103269867987210.1073/pnas.0600220103 16788072
    [Google Scholar]
  48. BhingeA. ChakrabartiP. UthanumallianK. BajajK. ChakrabortyK. VaradarajanR. Accurate detection of protein: Ligand binding sites using molecular dynamics simulations.Structure200412111989199910.1016/j.str.2004.09.005 15530363
    [Google Scholar]
  49. ValdarW.S. ThorntonJ.M. Protein-protein interfaces: Analysis of amino acid conservation in homodimers.Proteins200142110812410.1002/1097‑0134(20010101)42:1<108:AID‑PROT110>3.0.CO;2‑O 11093265
    [Google Scholar]
  50. MobleyD.L. DillK.A. Binding of small-molecule ligands to proteins: “what you see” is not always “what you get”.Structure200917448949810.1016/j.str.2009.02.010 19368882
    [Google Scholar]
  51. PatilR. DasS. StanleyA. YadavL. SudhakarA. VarmaA.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.PLoS One201058e1202910.1371/journal.pone.0012029 20808434
    [Google Scholar]
  52. GeH. WangY. LiC. ChenN. XieY. XuM. HeY. GuX. WuR. GuQ. ZengL. XuJ. Molecular dynamics-based virtual screening: Accelerating the drug discovery process by high-performance computing.J. Chem. Inf. Model.201353102757276410.1021/ci400391s 24001302
    [Google Scholar]
  53. LiuX. ShiD. ZhouS. LiuH. LiuH. YaoX. Molecular dynamics simulations and novel drug discovery.Expert Opin. Drug Discov.2018131233710.1080/17460441.2018.1403419 29139324
    [Google Scholar]
  54. BaigM.H. AhmadK. RoyS. AshrafJ.M. AdilM. SiddiquiM.H. KhanS. KamalM.A. ProvazníkI. ChoiI. Computer aided drug design: Success and limitations.Curr. Pharm. Des.201622557258110.2174/1381612822666151125000550 26601966
    [Google Scholar]
  55. LaneT.J. ShuklaD. BeauchampK.A. PandeV.S. To milliseconds and beyond: Challenges in the simulation of protein folding.Curr. Opin. Struct. Biol.2013231586510.1016/j.sbi.2012.11.002 23237705
    [Google Scholar]
  56. De ParisR. QuevedoC.V. RuizD.D. Norberto de SouzaO. An effective approach for clustering InhA molecular dynamics trajectory using substrate-binding cavity features.PLoS One2015107e013317210.1371/journal.pone.0133172 26218832
    [Google Scholar]
  57. SinghV.K. ChaurasiaH. KumariP. SomA. MishraR. SrivastavaR. NaazF. SinghA. SinghR.K. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2.J. Biomol. Struct. Dyn.202112410.1080/07391102.2021.1946716 34253149
    [Google Scholar]
  58. LiH. XieY. LiuC. LiuS. Physicochemical bases for protein folding, dynamics, and protein-ligand binding.Sci. China Life Sci.201457328730210.1007/s11427‑014‑4617‑2 24554472
    [Google Scholar]
  59. CooperA. JohnsonC.M. Introduction to microcalorimetry and biomolecular energetics.Methods Mol. Biol.199422109124 8312987
    [Google Scholar]
  60. RossP.D. SubramanianS. Thermodynamics of protein association reactions: Forces contributing to stability.Biochemistry198120113096310210.1021/bi00514a017 7248271
    [Google Scholar]
  61. RehmanM.T. ShamsiH. KhanA.U. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches.Mol. Pharm.20141161785179710.1021/mp500116c 24745377
    [Google Scholar]
  62. McCarthyM.W. Cefiderocol to treat complicated urinary tract infection.Drugs Today (Barc)202056317718410.1358/dot.2020.56.3.3118466 32282864
    [Google Scholar]
  63. DandachiD. Rodriguez-BarradasM.C. Viral pneumonia: Etiologies and treatment.J. Investig. Med.201866695796510.1136/jim‑2018‑000712 29680828
    [Google Scholar]
  64. JainS. SelfW.H. WunderinkR.G. FakhranS. BalkR. BramleyA.M. ReedC. GrijalvaC.G. AndersonE.J. CourtneyD.M. ChappellJ.D. QiC. HartE.M. CarrollF. TrabueC. DonnellyH.K. WilliamsD.J. ZhuY. ArnoldS.R. AmpofoK. WatererG.W. LevineM. LindstromS. WinchellJ.M. KatzJ.M. ErdmanD. SchneiderE. HicksL.A. McCullersJ.A. PaviaA.T. EdwardsK.M. FinelliL. TeamC.E.S. Community-acquired pneumonia requiring hospitalization among U.S. adults.N. Engl. J. Med.2015373541542710.1056/NEJMoa1500245 26172429
    [Google Scholar]
  65. TorresA. ZhongN. PachlJ. TimsitJ.F. KollefM. ChenZ. SongJ. TaylorD. LaudP.J. StoneG.G. ChowJ.W. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial.Lancet Infect. Dis.201818328529510.1016/S1473‑3099(17)30747‑8 29254862
    [Google Scholar]
  66. NairG.B. NiedermanM.S. Nosocomial pneumonia: Lessons learned.Crit. Care Clin.201329352154610.1016/j.ccc.2013.03.007 23830652
    [Google Scholar]
  67. ItoA. SatoT. OtaM. TakemuraM. NishikawaT. TobaS. KohiraN. MiyagawaS. IshibashiN. MatsumotoS. NakamuraR. TsujiM. YamanoY. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria.Antimicrob. Agents Chemother.201762162 29061741
    [Google Scholar]
  68. TakemuraM. NakamuraR. SatoT. TsujiM. YamanoY. 28th European Congress of Clinical Microbiology and Infectious DiseasesMadrid, Spain20182124
    [Google Scholar]
  69. SatoT. YamawakiK. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin.Clin. Infect. Dis.201969Suppl. 7S538S54310.1093/cid/ciz826 31724047
    [Google Scholar]
  70. KazmierczakK.M. TsujiM. WiseM.G. HackelM. YamanoY. EcholsR. SahmD.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study).Int. J. Antimicrob. Agents201953217718410.1016/j.ijantimicag.2018.10.007 30395986
    [Google Scholar]
  71. WangY. CuiR. LiG. GaoQ. YuanS. AltmeyerR. ZouG. Teicoplanin inhibits Ebola pseudovirus infection in cell culture.Antiviral Res.20161251710.1016/j.antiviral.2015.11.003 26585243
    [Google Scholar]
  72. ColsonP. RaoultD. Fighting viruses with antibiotics: An overlooked path.Int. J. Antimicrob. Agents201648434935210.1016/j.ijantimicag.2016.07.004 27546219
    [Google Scholar]
  73. CalyL. DruceJ.D. CattonM.G. JansD.A. WagstaffK.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro.Antiviral Res.202017810478710.1016/j.antiviral.2020.104787 32251768
    [Google Scholar]
  74. BaronS.A. DevauxC. ColsonP. RaoultD. RolainJ.M. Teicoplanin: An alternative drug for the treatment of COVID-19?Int. J. Antimicrob. Agents202055410594410.1016/j.ijantimicag.2020.105944 32179150
    [Google Scholar]
/content/journals/cchts/10.2174/1386207325666220816125639
Loading
/content/journals/cchts/10.2174/1386207325666220816125639
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): 3CLP; COVID-19; drug re-purposing; MD simulation; molecular docking; Virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test