Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Pyrazole-scaffold protein kinase inhibitors (PKIs) have emerged as promising therapeutic agents for the treatment of various diseases, such as cancer, inflammatory disorders, and neurological diseases. This review article provides an overview of the pharmacological properties of pyrazole-scaffold PKIs, including their mechanism of action, selectivity, potency, and toxicity. The article also summarizes the recent developments in the design and synthesis of pyrazole-scaffold PKIs, highlighting the structural features and modifications that contribute to their pharmacological activity. In addition, the article discusses the preclinical and clinical studies of pyrazole-scaffold PKIs, including their efficacy, safety, and pharmacokinetic properties.

Methods

A comprehensive search has been conducted on several online patent databases, including the United States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the World Intellectual Property Organization (WIPO). The search was conducted using pyrazole as the keyword. The search was limited to patents filed between 2015 and 2022. Patents were included if they involved articles in the fields of protein kinase inhibitors, and included literature on some pyrazoles and their pharmacological activities.

Results

Data were extracted from each included patent on the following variables: patent title, patent number, inventors, assignee, filing date, publication date, patent type, and field of invention. Data were extracted from each patent using a standardized form to ensure consistency and accuracy.

Conclusion

The design and pharmacological evaluation of organic compounds containing pyrazole structure as biologically active substances have been done, and the key structures from the pharmacological data obtained as protein kinase inhibitors have been addressed in detail. The review concludes with a discussion on the current challenges and future directions for the development of pyrazole-scaffold PKIs as therapeutic agents. Overall, this review article provides a comprehensive summary of the pharmacological properties of pyrazole-scaffold PKIs, which will be of interest to researchers and clinicians in the field of drug discovery and development.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073252211231024182817
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. LiuQ. SabnisY. ZhaoZ. ZhangT. BuhrlageS.J. JonesL.H. GrayN.S. Developing irreversible inhibitors of the protein kinase cysteinome.Chem. Biol.201320214615910.1016/j.chembiol.2012.12.006 23438744
    [Google Scholar]
  2. WangJ. MaldonadoM.A. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases.Cell. Mol. Immunol.200634255261 16978533
    [Google Scholar]
  3. BrookJ.D. McCurrachM.E. HarleyH.G. BucklerA.J. ChurchD. AburataniH. HunterK. StantonV.P. ThirionJ.P. HudsonT. SohnR. ZemelmanB. SnellR.G. RundleS.A. CrowS. DaviesJ. ShelbourneP. BuxtonJ. JonesC. JuvonenV. JohnsonK. HarperP.S. ShawD.J. HousmanD.E. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member.Cell199268479980810.1016/0092‑8674(92)90154‑5 1310900
    [Google Scholar]
  4. LahiryP. TorkamaniA. SchorkN.J. HegeleR.A. Kinase mutations in human disease: Interpreting genotype–phenotype relationships.Nat. Rev. Genet.2010111607410.1038/nrg2707 20019687
    [Google Scholar]
  5. BhagirathN. Kennedy-SmithJ. LucasM.C. PadillaF. 1 H-pyrazole and 4,5-disubstituted thiazole inhibitors of SYK.US Patent 9,988,3782018
  6. DasJ. Novel N-pyrimidin-4-yl-3-amino-pyrrolo [3, 4-C] pyrazole derivatives as PKC kinase inhibitors: A patent evaluation of US2015099743 (A1).Expert Opin. Ther. Pat.201626452352810.1517/13543776.2015.1124088 26593678
    [Google Scholar]
  7. LuZ. HunterT. Metabolic kinases moonlighting as protein kinases.Trends Biochem. Sci.201843430131010.1016/j.tibs.2018.01.006 29463470
    [Google Scholar]
  8. ZhangG. RenB. WangH. ZhaoH. GuoY. WangZ. ZhouC. 5-Amino-4-carbamoyl-pyrazole Compounds as Selective and Irreversible t790m over wt-egfr Kinase Inhibitors and Use Thereof. US Patent 2016,008,4112016
  9. LiH. PeiF. TaylorD.L. BaharI. QuartataWeb: Integrated chemical-protein-pathway mapping for polypharmacology and chemogenomics.Bioinformatics202036123935393710.1093/bioinformatics/btaa210 32221612
    [Google Scholar]
  10. KunosG. IyerM. CinarR. RiceK.C. Pyrazole derivatives and their use as cannabinoid receptor mediators.US Patent 10,329,2592019
  11. LeeK.I. JungY.H. SongJ.Y. JunS.A. Pyrazole derivative as ALK5 inhibitor and uses thereof.US Patent 10,954,2322021
  12. RoskoskiR.Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes.Pharmacol. Res.2016103264810.1016/j.phrs.2015.10.021 26529477
    [Google Scholar]
  13. BogoyevitchM. FairlieD. A new paradigm for protein kinase inhibition: Blocking phosphorylation without directly targeting ATP binding.Drug Discov. Today20071215-1662263310.1016/j.drudis.2007.06.008 17706543
    [Google Scholar]
  14. LuX. SmaillJ.B. DingK. New promise and opportunities for allosteric kinase inhibitors.Angew. Chem. Int. Ed.20205933137641377610.1002/anie.201914525 31889388
    [Google Scholar]
  15. HuangS. ArmstrongE.A. BenaventeS. ChinnaiyanP. HarariP.M. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): Combining anti-EGFR antibody with tyrosine kinase inhibitor.Cancer Res.200464155355536210.1158/0008‑5472.CAN‑04‑0562 15289342
    [Google Scholar]
  16. ThaimattamR. BanerjeeR. MiglaniR. IqbalJ. Protein kinase inhibitors: Structural insights into selectivity.Curr. Pharm. Des.200713272751276510.2174/138161207781757042 17897021
    [Google Scholar]
  17. ShuttleworthS.J. BaileyS.G. TownsendP.A. Histone Deacetylase inhibitors: New promise in the treatment of immune and inflammatory diseases.Curr. Drug Targets201011111430143810.2174/1389450111009011430 20583972
    [Google Scholar]
  18. MifflinL. OfengeimD. YuanJ. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target.Nat. Rev. Drug Discov.202019855357110.1038/s41573‑020‑0071‑y 32669658
    [Google Scholar]
  19. AkhtarJ. KhanA.A. AliZ. HaiderR. Shahar YarM. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.Eur. J. Med. Chem.201712514318910.1016/j.ejmech.2016.09.023 27662031
    [Google Scholar]
  20. BawaS. SiddiquiN. Andalip; Ali, R.; Afzal, O.; Akhtar, M.J.; Azad, B.; Kumar, R. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review.J. Pharm. Bioallied Sci.20113219421210.4103/0975‑7406.80765 21687347
    [Google Scholar]
  21. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules25081909 32326131
    [Google Scholar]
  22. WeiZ.Y. ChiK.Q. WangK.S. WuJ. LiuL.P. PiaoH.R. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents.Bioorg. Med. Chem. Lett.201828101797180310.1016/j.bmcl.2018.04.021 29678461
    [Google Scholar]
  23. ÇetinA. Bildiriciİ. A study on synthesis and antimicrobial activity of 4-acyl-pyrazoles.J. Saudi Chem. Soc.201822327929610.1016/j.jscs.2016.05.008
    [Google Scholar]
  24. FujimoriY. KatsunoK. NakashimaI. Ishikawa-TakemuraY. FujikuraH. IsajiM. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models.J. Pharmacol. Exp. Ther.2008327126827610.1124/jpet.108.140210 18583547
    [Google Scholar]
  25. MaralaR.B. BrownJ.A. KongJ.X. TraceyW.R. KnightD.R. WesterR.T. SunD. KennedyS.P. HamanakaE.S. RuggeriR.B. HillR.J. Zoniporide: A potent and highly selective inhibitor of human Na+/H+ exchanger-1.Eur. J. Pharmacol.20024511374110.1016/S0014‑2999(02)02193‑3 12223226
    [Google Scholar]
  26. DooleyM. PloskerG.L. Zaleplon.Drugs200060241344510.2165/00003495‑200060020‑00014 10983740
    [Google Scholar]
  27. ArmstrongD. gastric pH-the most relevant predictor of benefit in reflux disease?Aliment. Pharmacol. Ther.200420192610.1111/j.1365‑2036.2004.02140.x 15456460
    [Google Scholar]
  28. GalièN. GhofraniH.A. TorbickiA. BarstR.J. RubinL.J. BadeschD. FlemingT. ParpiaT. BurgessG. BranziA. GrimmingerF. KurzynaM. SimonneauG. Sildenafil citrate therapy for pulmonary arterial hypertension.N. Engl. J. Med.2005353202148215710.1056/NEJMoa050010 16291984
    [Google Scholar]
  29. Van GaalL.F. RissanenA.M. ScheenA.J. ZieglerO. RössnerS. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study.Lancet200536594681389139710.1016/S0140‑6736(05)66374‑X 15836887
    [Google Scholar]
  30. ShawA.T. KimD.W. NakagawaK. SetoT. CrinóL. AhnM.J. De PasT. BesseB. SolomonB.J. BlackhallF. WuY.L. ThomasM. O’ByrneK.J. Moro-SibilotD. CamidgeD.R. MokT. HirshV. RielyG.J. IyerS. TassellV. PolliA. WilnerK.D. JänneP.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer.N. Engl. J. Med.2013368252385239410.1056/NEJMoa1214886 23724913
    [Google Scholar]
  31. CastrénE. Neurotrophic effects of antidepressant drugs.Curr. Opin. Pharmacol.200441586410.1016/j.coph.2003.10.004 15018840
    [Google Scholar]
  32. SchneiderH. PanigelM. DancisJ. Transfer across the perfused human placenta of antipyrine, sodium, and leucine.Am. J. Obstet. Gynecol.1972114682282810.1016/0002‑9378(72)90909‑X 4676572
    [Google Scholar]
  33. JasieckaA. MaślankaT. JaroszewskiJ.J. Pharmacological characteristics of metamizole.Pol. J. Vet. Sci.201417120721410.2478/pjvs‑2014‑0030 24724493
    [Google Scholar]
  34. RaffaD. MaggioB. RaimondiM.V. CascioferroS. PlesciaF. CancemiG. DaidoneG. Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle.Eur. J. Med. Chem.20159773274610.1016/j.ejmech.2014.12.023 25549911
    [Google Scholar]
  35. TurkanF. ÇetinA. TaslimiP. KaramanM. Gulçinİ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors.Bioorg. Chem.20198642042710.1016/j.bioorg.2019.02.013 30769267
    [Google Scholar]
  36. GangulyS. JacobS.K. Therapeutic outlook of pyrazole analogs: A mini review.Mini Rev. Med. Chem.2017171195998310.2174/1389557516666151120115302 26586126
    [Google Scholar]
  37. KaratiD. MahadikK.R. TrivediP. KumarD. A Molecular Insight into Pyrazole Congeners as Antimicrobial, Anticancer, and Antimalarial Agents.Med. Chem.202218101044105910.2174/1573406418666220303150640 35240964
    [Google Scholar]
  38. SiuM. EstradaA. LiuW. LyssikatosJ.P. PatelS. LiangG. ChenK. Substituted pyrazoles and uses thereof.US Patent 9,365,583,2016
    [Google Scholar]
  39. MorS. KhatriM. punia, R.; Sindhu, S. Recent Progress in anticancer agents incorporating Pyrazole scaffold.Mini Rev. Med. Chem.202222111516310.2174/1389557521666210325115218 33823764
    [Google Scholar]
  40. McDonaldE. JonesK. BroughP. DrysdaleM. WorkmanP. Discovery and development of pyrazole-scaffold Hsp90 inhibitors.Curr. Top. Med. Chem.20066111193120310.2174/156802606777812086 16842156
    [Google Scholar]
  41. MeyerM. What is special about patent citations? Differences between scientific and patent citations.Scientometrics20004919312310.1023/A:1005613325648
    [Google Scholar]
  42. MarxM. FuegiA. Reliance on science: Worldwide front‐page patent citations to scientific articles.Strateg. Manage. J.20204191572159410.1002/smj.3145
    [Google Scholar]
  43. RotariuD. BabesE.E. TitD.M. MoisiM. BusteaC. StoicescuM. RaduA.F. VesaC.M. BehlT. BungauA.F. BungauS.G. Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders.Biomed. Pharmacother.202215211323810.1016/j.biopha.2022.113238 35687909
    [Google Scholar]
  44. KimP.M. KornbergM.D. Targeting PKC in microglia to promote remyelination and repair in the CNS.Curr. Opin. Pharmacol.20226210310810.1016/j.coph.2021.11.008 34965482
    [Google Scholar]
  45. JubaidiF.F. ZainalabidinS. TaibI.S. Abdul HamidZ. Mohamad AnuarN.N. JalilJ. Mohd NorN.A. BudinS.B. The role of PKC-MAPK signalling pathways in the development of hyperglycemia-induced cardiovascular complications.Int. J. Mol. Sci.20222315858210.3390/ijms23158582 35955714
    [Google Scholar]
  46. MiaoL. PanD. ShiJ. DuJ. ChenP. GaoJ. YuY. ShiD.Z. GuoM. Role and mechanism of PKC-δ for cardiovascular disease: Current status and perspective.Front. Cardiovasc. Med.2022981636910.3389/fcvm.2022.816369 35242825
    [Google Scholar]
  47. HuiL. SeijiN. StephanieA.S. MinT. ChunfengT. Novel Npyrimidin- 4-yl-3-amino-pyrrolo[3,4-c]pyrazole derivatives as PKC kinase inhibitors.US Patent 0,997,7432015
  48. AnZ. AksoyO. ZhengT. FanQ.W. WeissW.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies.Oncogene201837121561157510.1038/s41388‑017‑0045‑7 29321659
    [Google Scholar]
  49. SuV.Y.F. YangK.Y. HuangT.Y. HsuC.C. ChenY.M. YenJ.C. ChouY.C. ChangY.L. HeC.H. The efficacy of first-line tyrosine kinase inhibitors combined with co-medications in Asian patients with EGFR mutation non-small cell lung cancer.Sci. Rep.20201011496510.1038/s41598‑020‑71583‑w 32917914
    [Google Scholar]
  50. WheelerD.L. DunnE.F. HarariP.M. Understanding resistance to EGFR inhibitors—impact on future treatment strategies.Nat. Rev. Clin. Oncol.20107949350710.1038/nrclinonc.2010.97 20551942
    [Google Scholar]
  51. ZahorowskaB. CroweP.J. YangJ.L. Combined therapies for cancer: A review of EGFR-targeted monotherapy and combination treatment with other drugs.J. Cancer Res. Clin. Oncol.200913591137114810.1007/s00432‑009‑0622‑4 19533170
    [Google Scholar]
  52. WangY. ZhouJ. GaoY. WangD. HongB. ShenX. WuY. LiC. Benzofuran Pyrazole Amine Protein Kinase Inhibitor.US Patent 18,001,2512018
  53. FanJ. FongT. XiaZ. ZhangJ. LuoP. The efficacy and safety of ALK inhibitors in the treatment of ALK-positive non-small cell lung cancer: A network meta-analysis.Cancer Med.20187104993500510.1002/cam4.1768 30230699
    [Google Scholar]
  54. MarsiljeT.H. PeiW. ChenB. LuW. UnoT. JinY. JiangT. KimS. LiN. WarmuthM. SarkisovaY. SunF. SteffyA. PferdekamperA.C. LiA.G. JosephS.B. KimY. LiuB. TuntlandT. CuiX. GrayN.S. SteensmaR. WanY. JiangJ. ChopiukG. LiJ. GordonW.P. RichmondW. JohnsonK. ChangJ. GroesslT. HeY.Q. PhimisterA. AycinenaA. LeeC.C. BursulayaB. KaranewskyD.S. SeidelH.M. HarrisJ.L. MichellysP.Y. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials.J. Med. Chem.201356145675569010.1021/jm400402q 23742252
    [Google Scholar]
  55. ParkC.H. ChoeH. JangI.Y. KwonS.Y. LatifM. LeeH.K. LeeH.J. YangE.H. YunJ.I. ChaeC.H. ChoS.Y. ChoiS.U. HaJ.D. JungH. KimH.R. KimP. LeeC.O. YunC.S. LeeK. Novel bis-ortho-alkoxy-para-piperazinesubstituted-2,4-dianilinopyrimidines (KRCA-0008) as potent and selective ALK inhibitors for anticancer treatment.Bioorg. Med. Chem. Lett.201323226192619610.1016/j.bmcl.2013.08.090 24095090
    [Google Scholar]
  56. ShortK.M. Estiarte-MartınezM.D.L.A. KitaD.B. ShiauT.P. Substituted Pyrazole Compounds As Serine Protease Inhibitors.US Patent 10,532,9952020
  57. MackmanN. BergmeierW. StoufferG.A. WeitzJ.I. Therapeutic strategies for thrombosis: New targets and approaches.Nat. Rev. Drug Discov.202019533335210.1038/s41573‑020‑0061‑0 32132678
    [Google Scholar]
  58. BekassyZ. Lopatko FagerströmI. BaderM. KarpmanD. Crosstalk between the renin–angiotensin, complement and kallikrein–kinin systems in inflammation.Nat. Rev. Immunol.202222741142810.1038/s41577‑021‑00634‑8 34759348
    [Google Scholar]
  59. BeatonH. CroweD.M. EdwardsH.J. Griffiths-HaynesN.J. Polymorphs of N-[(3-fluoro-4-methoxypyridin-2-yl)methyl]-3- (methoxymethyl)-1-({4-[2-oxopyridin-1-yl)methyl]phenyl} methyl) pyrazole-4-carboxamide as kallikrein inhibitors. US Patent 11,230,537, 2022
  60. DavieR.L. EdwardsH.J. EvansD.M. HodgsonS.T. PethenS.J. RookerD.P. Pyrazole Derivatives as Plasma Kallikrein Inhibitors.US Patent 11,180,4842021
  61. SoualmiaF. El AmriC. Serine protease inhibitors to treat inflammation: A patent review (2011-2016).Expert Opin. Ther. Pat.20182829311010.1080/13543776.2018.1406478 29171765
    [Google Scholar]
  62. BarzkarN. KhanZ. Tamadoni JahromiS. PourmozaffarS. GozariM. NahavandiR. A critical review on marine serine protease and its inhibitors: A new wave of drugs?Int. J. Biol. Macromol.202117067468710.1016/j.ijbiomac.2020.12.134 33387547
    [Google Scholar]
  63. AbbasA.A. AbdellattifM.H. DawoodK.M. Inhibitory activities of bipyrazoles: A patent review.Expert Opin. Ther. Pat.2022321638710.1080/13543776.2021.1953474 34232805
    [Google Scholar]
  64. FindlayA. TurnerC. DeodharM. FootJ. ZhouW. JarolımekW. RobertsonA. Haloallylamine pyrazole derivative inhibitors of Lysyl Oxidases and uses thereof.US Patent 16,490,2202020
  65. AyyoubS. OrriolsR. OliverE. CeideO.T. Thrombosis models: An overview of common in vivo and in vitro models of thrombosis.Int. J. Mol. Sci.2023243256910.3390/ijms24032569 36768891
    [Google Scholar]
  66. ShenC. MackeiganD.T. ShoaraA.A. XuR. BhoriaP. KarakasD. MaW. CerenziaE. ChenZ. HoardB. LinL. LeiX. ZhuG. ChenP. JohnsonP.E. NiH. Dual roles of fucoidan-GPIbα interaction in thrombosis and hemostasis: Implications for drug development targeting GPIbα.J. Thromb. Haemost.20232151274128810.1016/j.jtha.2022.12.030 36732162
    [Google Scholar]
  67. TadesseS. CaldonE.C. TilleyW. WangS. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update.J. Med. Chem.20196294233425110.1021/acs.jmedchem.8b01469 30543440
    [Google Scholar]
  68. LuT. WangY. ChenY. LuY. WangZ. JinQ. YangT. LinG. GuoQ. ZhaoL. Polycyclic Substituted Pyrazole Kinase Activity Inhibitors and Use Thereof. US Patent 9,550,7922017
  69. FordD.J. HorsleyH.T. ReubersonJ.T. Fused Pyrazole Derivatives As Kinase Inhibitors.US Patent 15,762,6702018
  70. BasingerJ. BookserB. ChenM. ChungD. GuptaV. HudsonA. KaplanA. NaJ. RenickJ. SantoraV. Substituted 2,4,5,6-tetrahydropyrrolo[3,4-c] pyrazole and 4,5,6,7-tetrahydro- 2h-pyrazolo [4,3-c] pyridine compounds as GLYT1 inhibitors.US Patent 9,708,3342017
  71. BiagettiM. CapelliA.M. RetiniM. Pyrazole derivatives as phosphoinositide 3-kinases inhibitors.US Patent 10,189,8442019
  72. KuntzK.W. MitchellL.H. ShapiroG. ChesworthR. Boriack-SjodinP.A. PRMT1 inhibitors and uses thereof. US Patent 9,023,8832015
  73. ZarubinT. HanJ. Activation and signaling of the p38 MAP kinase pathway.Cell Res.2005151111810.1038/sj.cr.7290257 15686620
    [Google Scholar]
  74. King-UnderwoodJ. HardyG. MurrayP.J. WilliamsJ.G. OnionsS.T. Pyrazole P38 map kinase inhibitors.US Patent 10,000,4712018
  75. HsiaoH.M. SapinoroR.E. ThatcherT.H. CroasdellA. LevyE.P. FultonR.A. OlsenK.C. PollockS.J. SerhanC.N. PhippsR.P. SimeP.J. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation.PLoS One201383e5825810.1371/journal.pone.0058258 23484005
    [Google Scholar]
  76. PottooF.H. JosephA. DasS. AkbarS. AhmedB. DewanganR.P. IqubalM.K. IqubalA. ChawlaP. Recent advancement of Pyrazole Scaffold based neuroprotective agents: A review.CNS Neurol. Disord. Drug Targets2022211094095110.2174/1871527320666210602152308 34080970
    [Google Scholar]
  77. WangT. YuD. LambM.L. Trk kinase inhibitors as new treatments for cancer and pain.Expert Opin. Ther. Pat.200919330531910.1517/13543770902721261 19441906
    [Google Scholar]
  78. Baker-GlennC. BurdickD.J. ChambersM. ChenH. EstradaA. SweeneyZ.K. ChanB. Pyrazole aminopyrimidine derivatives as LRRK2 modulators.US Patent 9,212,1732015
  79. JiangT. WangG. LiuY. FengL. WangM. LiuJ. ChenY. OuyangL. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers.Acta Pharm. Sin. B202111235537210.1016/j.apsb.2020.05.004 33643817
    [Google Scholar]
  80. BardenT.C. SheppeckJ.E. RennieG.R. RenhoweP.A. PerlN. NakaiT. MermerianA. LeeT.W. JungJ. JiaJ. IyerK. IyengarR. Pyrazole derivatives as SGC stimulators.EP Patent 3,194,3822016
  81. BagalS.K. CuiJ.J. GreasleyS.E. LunneyE.A. McalpineI.J. NagataA. NinkovicS. OmotoK. SkerrattS.E. StorerR.I. WarmusJ.S. Tropomyosin-related kinase inhibitors containingboth a 1H-pyrazole and a pyrimidine moiety.US Patent 15,300,4402017
  82. JinM. ZhouZ. ZhangL. ChenY. LiuL. ShenH. Effects of excessive iodine on the BDNF-TrkB signaling pathway and related genes in offspring of EAT rats.Biol. Trace Elem. Res.2023201277678510.1007/s12011‑022‑03187‑6 35322353
    [Google Scholar]
  83. HaciogluG. CirrikS. Tezcan YavuzB. TomrukC. KeskinA. UzunogluE. TakirS. The BDNF-TrkB signaling pathway is partially involved in the neuroprotective effects of hydrogen sulfide in Parkinson’s disease.Eur. J. Pharmacol.202394417559510.1016/j.ejphar.2023.175595 36804547
    [Google Scholar]
  84. HuffJ. UesugiM. KincaidJ. Di-Substituted Pyrazole Compounds For The Treatment of Diseases.US Patent 17,190,0862017
  85. AtkinsonS.J. DemontE.H. HarrisonL.A. LiwickiG.M. LucasS.C.C. PrestonA.G. SealJ. WallI.D. WatsonR.J. Pyrazole Derivatives as Bromodomain Inhibitors.US Patent 10,996,9612021
  86. Ponce-PoloÁ. HidalgoA.R. MartínezA.A. GuijarroR.I.O. Use of Patent Information to Characterize Trends in the Therapeutic Applications of Extracellular Vesicles Derived from Mesenchymal Stem Cells (MSC-EVs).Recent Pat. Biotechnol.202216324325510.2174/1872208316666220303095217 35240977
    [Google Scholar]
  87. AnwarS. ShahwanM. HasanG.M. IslamA. HassanM.I. Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy.Cell. Signal.20229911043410.1016/j.cellsig.2022.110434 35961526
    [Google Scholar]
  88. RoskoskiR. Jr Deucravacitinib is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis.Pharmacol. Res.202318910664210.1016/j.phrs.2022.106642 36754102
    [Google Scholar]
  89. HalloranD. PanditV. NoheA. The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review.J. Dev. Biol.20221033110.3390/jdb10030031 35997395
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073252211231024182817
Loading
/content/journals/cchts/10.2174/0113862073252211231024182817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test