Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aim and Objective: Lysine acetylation, as one type of post-translational modifications (PTM), plays key roles in cellular regulations and can be involved in a variety of human diseases. However, it is often high-cost and time-consuming to use traditional experimental approaches to identify the lysine acetylation sites. Therefore, effective computational methods should be developed to predict the acetylation sites. In this study, we developed a position-specific method for epsilon lysine acetylation site prediction. Material and Methods: Sequences of acetylated proteins were retrieved from the UniProt database. Various kinds of features such as position specific scoring matrix (PSSM), amino acid factors (AAF), and disorders were incorporated. A feature selection method based on mRMR (Maximum Relevance Minimum Redundancy) and IFS (Incremental Feature Selection) was employed. Results: Finally, 319 optimal features were selected from total 541 features. Using the 319 optimal features to encode peptides, a predictor was constructed based on dagging. As a result, an accuracy of 69.56% with MCC of 0.2792 was achieved. We analyzed the optimal features, which suggested some important factors determining the lysine acetylation sites. Conclusion: We developed a position-specific method for epsilon lysine acetylation site prediction. A set of optimal features was selected. Analysis of the optimal features provided insights into the mechanism of lysine acetylation sites, providing guidance of experimental validation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207320666170314093216
2017-08-01
2025-04-04
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/1386207320666170314093216
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test