Skip to content
2000
Volume 13, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

The anodic voltammetric behavior and electroanalytical determination of rosiglitazone were studied using cyclic, linear sweep, differential pulse and square wave voltammetric techniques on a glassy carbon electrode. The oxidation of rosiglitazone was irreversible and exhibited diffusion controlled process depending on pH. Different parameters were tested to optimize the conditions for the determination of the oxidation mechanism of rosiglitazone. The dependence of current intensities and potentials on pH, concentration, scan rate, nature of the buffer was also investigated. According to the linear relationship between the peak current and the concentration, differential pulse and square wave voltammetric methods for rosiglitazone assay in pharmaceutical dosage forms and biological fluids were developed. A linear response was obtained within the range of 1x10-6M - 6x10-5M in 0.1 M H2SO4 and acetate buffer at pH 5.70 for both voltammetric methods in human serum samples. The practical analytical value of the method was demonstrated by quantitative determination of rosiglitazon in pharmaceutical formulation and human serum, without the need for separation or complex sample preparation, since there was no interference from the excipients and endogenous substances. The methods were fully validated and successfully applied to the high throughput determination of the drug in tablets and human serum with good recoveries.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/138620710791920419
2010-09-01
2025-07-13
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/138620710791920419
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test