Skip to content
2000
image of Agaricus blazei Murill Extract (FA-2-b-β) Induces Ferroptosis in Diffuse Large B-Cell Lymphoma via the Nrf2/Ho-1 Pathway

Abstract

Introduction

Ferroptosis is a recently identified iron-dependent programmed cell death closely linked to the progression of diffuse large B-cell lymphoma (DLBCL). While studies have shown that FA-2-b-β extracted from affects various malignancies, its specific role in modulating ferroptosis in DLBCL and the underlying mechanisms are not yet clear. Objectives: This study aims to elucidate the anticancer properties and mechanisms of FA-2-b-β in inducing ferroptosis in DLBCL cells.

Methods

The cell counting kit 8 assay was carried out to evaluate the inhibition of cellular proliferation. Ferroptosis was evaluated using the ferrous colorimetric method, together with kits for measuring malondialdehyde (MDA), reduced glutathione (GSH), reactive oxygen species (ROS), western blotting, JC-1 assays, and transmission electron microscopy. Reverse transcription-quantitative polymerase chain reaction and western blot were conducted to determine whether FA-2-b-β affected nuclear factor erythroid 2- related factor 2 (Nrf2) and heme oxygenase 1 (HO-1).

Results

FA-2-b-β induced ferroptosis in DLBCL cells by elevating the ROS and MDA levels, facilitating the accretion of Fe2+, diminishing GSH, upregulating the expression of PTGS2, and downregulating the expression of FTH1, SLC7A11, and GPX4. Furthermore, FA-2-b-β caused structural damage to mitochondria and diminished the mitochondrial membrane potential. The ferroptosis triggered by FA-2-b-β also led to the downregulation of Nrf2 and HO-1, thereby regulating the Nrf2/HO-1 pathway.

Conclusion

FA-2-b-β suppressed DLBCL cell growth by inducing ferroptosis through the Nrf2/HO-1 pathway, making it an attractive potential therapeutic option.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073363731250218054917
2025-02-28
2025-03-28
Loading full text...

Full text loading...

References

  1. Silkenstedt E. Salles G. Campo E. Dreyling M. B-cell non-Hodgkin lymphomas. Lancet 2024 403 10438 1791 1807 10.1016/S0140‑6736(23)02705‑8 38614113
    [Google Scholar]
  2. Sehn L.H. Salles G. Diffuse large B-cell lymphoma. N. Engl. J. Med. 2021 384 9 842 858 10.1056/NEJMra2027612 33657296
    [Google Scholar]
  3. Yamauchi N. Maruyama D. Current development of chimeric antigen receptor T-cell therapy for diffuse large B-cell lymphoma and high-grade B-cell lymphoma. Int. J. Hematol. 2024 112 5 662 677 10.1111/ejh.14166
    [Google Scholar]
  4. Yang G. Song Z. Wang R. Sun Y. Apoptotic effect of selenium mushroom extract from Qinba on multiple myeloma cells. Histol. Histopathol. 2023 38 9 1069 1077 36562285
    [Google Scholar]
  5. da Silva de Souza A.C. Correa V.G. Goncalves G.A. Soares A.A. Bracht A. Peralta R.M. Agaricus blazei bioactive compounds and their effects on human health: Benefits and controversies. Curr. Pharm. Des. 2017 23 19 2807 2834 10.2174/1381612823666170119093719 28103773
    [Google Scholar]
  6. Hetland G. Tangen J.M. Mahmood F. Mirlashari M.R. Nissen-Meyer L.S.H. Nentwich I. Therkelsen S.P. Tjønnfjord G.E. Johnson E. Antitumor, anti-inflammatory and antiallergic effects of Agaricus blazeimushroom extract and the related medicinal basidiomycetes mushrooms, Hericium erinaceus and Grifola frondosa: A review of preclinical and clinical studies. Nutrients 2020 12 5 1339 10.3390/nu12051339 32397163
    [Google Scholar]
  7. Val C.H. Brant F. Miranda A.S. Rodrigues F.G. Oliveira B.C.L. Santos E.A. Assis D.R.R. Esper L. Silva B.C. Rachid M.A. Tanowitz H.B. Teixeira A.L. Teixeira M.M. Régis W.C.B. Machado F.S. Effect of mushroom Agaricus blazei on immune response and development of experimental cerebral malaria. Malar. J. 2015 14 1 311 10.1186/s12936‑015‑0832‑y 26260055
    [Google Scholar]
  8. Sun Y. Cheng M. Dong L. Yang K. Ma Z. Yu S. Yan P. Bai K. Zhu X. Zhang Q. <em>Agaricus blazei</em> extract (FA‑2‑b‑β) induces apoptosis in chronic myeloid leukemia cells. Oncol. Lett. 2020 20 5 1 10.3892/ol.2020.12133 32989404
    [Google Scholar]
  9. Feng W.W. Bai Y. Wang D.P. Fan F.Y. Sun Y.Q. Study on the mechanism of multi-drug resistance of Agaricus blazei extract FA-2-b-β mediated Wnt signaling pathway to reverse acute T lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2023 31 3 621 627 37356917 10.19746/j.cnki.issn.1009‑2137.2023.03.001
    [Google Scholar]
  10. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. III Stockwell B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  11. Zhang Y. Tan H. Daniels J.D. Zandkarimi F. Liu H. Brown L.M. Uchida K. O’Connor O.A. Stockwell B.R. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 2019 26 5 623 633.e9 10.1016/j.chembiol.2019.01.008 30799221
    [Google Scholar]
  12. Kinowaki Y. Kurata M. Ishibashi S. Ikeda M. Tatsuzawa A. Yamamoto M. Miura O. Kitagawa M. Yamamoto K. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab. Invest. 2018 98 5 609 619 10.1038/s41374‑017‑0008‑1 29463878
    [Google Scholar]
  13. Chen Z. Jiang J. Fu N. Chen L. Targetting ferroptosis for blood cell-related diseases. J. Drug Target. 2022 30 3 244 258 10.1080/1061186X.2021.1971237 34415804
    [Google Scholar]
  14. Dodson M. Castro-Portuguez R. Zhang D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019 23 101107 10.1016/j.redox.2019.101107 30692038
    [Google Scholar]
  15. Furfaro A.L. Traverso N. Domenicotti C. Piras S. Moretta L. Marinari U.M. Pronzato M.A. Nitti M. The Nrf2/HO‐1 axis in cancer cell growth and chemoresistance. Oxid. Med. Cell. Longev. 2016 2016 1 1958174 10.1155/2016/1958174 26697129
    [Google Scholar]
  16. Yi X. Zhao Y. Xue L. Zhang J. Qiao Y. Jin Q. Li H. Expression of Keap1 and Nrf2 in diffuse large B‑cell lymphoma and its clinical significance. Exp. Ther. Med. 2018 16 2 573 578 10.3892/etm.2018.6208 30112024
    [Google Scholar]
  17. Chen K. Yu Y. Wang Y. Zhu Y. Qin C. Xu J. Zou X. Tao T. Li Y. Jiang Y. Systematic pharmacology and experimental validation to reveal the alleviation of Astragalus membranaceus regulating ferroptosis in osteoarthritis. Drug Des. Devel. Ther. 2024 18 259 275 10.2147/DDDT.S441350 38318502
    [Google Scholar]
  18. Chen X. Yang J.H. Cho S.S. Kim J.H. Xu J. Seo K. Ki S.H. 5-Caffeoylquinic acid ameliorates oxidative stress-mediated cell death via Nrf2 activation in hepatocytes. Pharm. Biol. 2020 58 1 999 1005 10.1080/13880209.2020.1818791 32981407
    [Google Scholar]
  19. Gao Z. Sui J. Fan R. Qu W. Dong X. Sun D. Emodin protects against acute pancreatitis-associated lung injury by inhibiting NLPR3 inflammasome activation via Nrf2/HO-1 signaling. Drug Des. Devel. Ther. 2020 14 1971 1982 10.2147/DDDT.S247103 32546964
    [Google Scholar]
  20. Nastoupil L.J. Bartlett N.L. Navigating the evolving treatment landscape of diffuse large B-cell lymphoma. J. Clin. Oncol. 2023 41 4 903 913 10.1200/JCO.22.01848 36508700
    [Google Scholar]
  21. Wang S. Wang L. Hu J. Qian W. Zhang X. Hu Y. Zhu Q. Chen B. Wu D. Chang C.C.H. Xu P. Zheng X. Wei J. Liu Y. Cui G. Tang Y. Ma Y. Huang H. Yi H. Zhao W. Outcomes in refractory diffuse large B‐cell lymphoma: Results from a multicenter real‐world study in China. Cancer Commun. (Lond.) 2021 41 3 229 239 10.1002/cac2.12126 33482051
    [Google Scholar]
  22. Schmitt A. Xu W. Bucher P. Grimm M. Konantz M. Horn H. Zapukhlyak M. Berning P. Brändle M. Jarboui M.A. Schönfeld C. Boldt K. Rosenwald A. Ott G. Grau M. Klener P. Vockova P. Lengerke C. Lenz G. Schulze-Osthoff K. Hailfinger S. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood 2021 138 10 871 884 10.1182/blood.2020009404 33876201
    [Google Scholar]
  23. Wen R. Dong X. Zhuang H. Pang F. Ding S. Li N. Mai Y. Zhou S. Wang J. Zhang J. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine 2023 116 154881 10.1016/j.phymed.2023.154881 37209607
    [Google Scholar]
  24. Dixon S.J. Olzmann J.A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol. 2024 25 6 424 442 10.1038/s41580‑024‑00703‑5 38366038
    [Google Scholar]
  25. Stockwell B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022 185 14 2401 2421 10.1016/j.cell.2022.06.003 35803244
    [Google Scholar]
  26. Pope L.E. Dixon S.J. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 2023 33 12 1077 1087 10.1016/j.tcb.2023.05.003 37407304
    [Google Scholar]
  27. Su L.J. Zhang J.H. Gomez H. Murugan R. Hong X. Xu D. Jiang F. Peng Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019 2019 1 13 10.1155/2019/5080843 31737171
    [Google Scholar]
  28. Gourisankar S. Krokhotin A. Ji W. Liu X. Chang C.Y. Kim S.H. Li Z. Wenderski W. Simanauskaite J.M. Yang H. Vogel H. Zhang T. Green M.R. Gray N.S. Crabtree G.R. Rewiring cancer drivers to activate apoptosis. Nature 2023 620 7973 417 425 10.1038/s41586‑023‑06348‑2 37495688
    [Google Scholar]
  29. Yang R. Gao W. Wang Z. Jian H. Peng L. Yu X. Xue P. Peng W. Li K. Zeng P. Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis. Phytomedicine 2024 122 155135 10.1016/j.phymed.2023.155135 37856990
    [Google Scholar]
  30. Zhang L. Song W. Li H. Cui X. Ma J. Wang R. Xu Y. Li M. Bai X. Wang D. Sun H. Lu Z. 4‐octyl itaconate alleviates cisplatin‐induced ferroptosis possibly via activating the NRF2 / HO ‐1 signalling pathway. J. Cell. Mol. Med. 2024 28 7 e18207 10.1111/jcmm.18207 38506087
    [Google Scholar]
  31. Lin Q. Li S. Jin H. Cai H. Zhu X. Yang Y. Wu J. Qi C. Shao X. Li J. Zhang K. Zhou W. Zhang M. Cheng J. Gu L. Mou S. Ni Z. Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. Int. J. Biol. Sci. 2023 19 4 1192 1210 10.7150/ijbs.80775 36923942
    [Google Scholar]
  32. Wang H. Shu L. Lv C. Liu N. Long Y. Peng X. Ling H. Tao T. Tang J. Cheng Y. Liu S. Xiao D. Tao Y. BRCC36 deubiquitinates HMGCR to regulate the interplay between ferroptosis and pyroptosis. Adv. Sci. (Weinh.) 2024 11 11 2304263 10.1002/advs.202304263 38178583
    [Google Scholar]
  33. Wu Y. Jia C. Liu W. Zhan W. Chen Y. Lu J. Bao Y. Wang S. Yu C. Zheng L. Sun L. Song Z. J. Adv. Res. 2024
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073363731250218054917
Loading
/content/journals/cchts/10.2174/0113862073363731250218054917
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ferroptosis ; FA-2-b-β ; diffuse large B-cell lymphoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test