Skip to content
2000
image of Dry Powder Inhaler of Sustained-Release Microspheres Containing Glycyrrhizin: Factorial Design and Optimization

Abstract

Background

Glycyrrhizin is a saponin glycoside of the liquorice plant. It is commonly used to treat respiratory problems. Inhalable glycyrrhizin formulation in asthma can be a good alternative for widely used inhaled corticosteroids that exhibit side effects upon long-term use.

Aim

Asthma is a major and prevalent respiratory disease. However, the rate of drug development in this arena is quite slow, as indicated by merely four new drugs approved by the USFDA in the last 6 years for respiratory diseases.

Objective

We herein propose to design and develop Glycyrrhizin-inhalable microspheres for the treatment of asthma.

Method

A 32 full factorial design was applied to show the effect of the two independent variables (polycaprolactone, and polyvinyl alcohol concentration) on each of the selected dependent variables (drug loading and entrapment efficiency).

Results

The optimized microspheres were spherical and 1-5 µm in size. The formulation showed a fine particle fraction of 78%, indicating that the powders were suitable for inhalation. The Drug loading and encapsulation efficiency of the optimized formulation were found to be 9.8% and 40.98%, respectively. The aerosolization study on the Anderson cascade impactor showed that deposition of particles of formulation blended with lactose was better than nonblended formulation and drug in the lungs.

Conclusion

In comparison to the pure drug, optimized formulation prolonged drug residency in the lung for more than 12 hrs after inhalation. Inhalable microparticles of glycyrrhizin provide sustained and prolonged drug release in the lungs along with protection of drugs against pulmonary degradation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073333147250127053403
2025-02-28
2025-03-28
Loading full text...

Full text loading...

References

  1. Aaron S.D. Vandemheen K.L. Whitmore G.A. Bergeron C. Boulet L.P. Côté A. McIvor R.A. Penz E. Field S.K. Lemière C. Mayers I. Bhutani M. Azher T. Lougheed M.D. Gupta S. Ezer N. Licskai C.J. Hernandez P. Ainslie M. Alvarez G.G. Mulpuru S. UCAP Investigators Early diagnosis and treatment of COPD and Asthma — A randomized, controlled trial. N. Engl. J. Med. 2024 390 22 2061 2073 10.1056/NEJMoa2401389 38767248
    [Google Scholar]
  2. Tamayo J.M. Osman H.C. Schwartzer J.J. Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav. Immun. 2024 116 218 228 10.1016/j.bbi.2023.12.003 38070621
    [Google Scholar]
  3. Papadopoulos N.G. Miligkos M. Xepapadaki P. A current perspective of allergic asthma: From mechanisms to management. Handb. Exp. Pharmacol. 2021 268 69 93 10.1007/164_2021_483 34085124
    [Google Scholar]
  4. Saeed A.M. Riad N.M. Osman N.M. Khattab A.N. Mohammed S.E. Study of voice disorders in patients with bronchial asthma and chronic obstructive pulmonary disease. Egypt J Bronchol 2018 12 20 26 10.4103/ejb.ejb_34_17
    [Google Scholar]
  5. Khakzad M.R. Hajavi J. Sadeghdoust M. Aligolighasemabadi F. Effects of lipopolysaccharide-loaded PLGA nanoparticles in mice model of asthma by sublingual immunotherapy. Int. J. Polym. Mater. 2020 69 4 222 229 10.1080/00914037.2018.1561453
    [Google Scholar]
  6. Cevhertas L. Ogulur I. Maurer D.J. Burla D. Ding M. Jansen K. Koch J. Liu C. Ma S. Mitamura Y. Peng Y. Radzikowska U. Rinaldi A.O. Satitsuksanoa P. Globinska A. van de Veen W. Sokolowska M. Baerenfaller K. Gao Y. Agache I. Akdis M. Akdis C.A. Advances and recent developments in asthma in 2020. Allergy 2020 75 12 3124 3146 10.1111/all.14607 32997808
    [Google Scholar]
  7. Haktanir Abul M. Phipatanakul W. Severe asthma in children: Evaluation and management. Allergol. Int. 2019 68 2 150 157 10.1016/j.alit.2018.11.007 30648539
    [Google Scholar]
  8. Agache I. Eguiluz-Gracia I. Cojanu C. Laculiceanu A. del Giacco S. Zemelka-Wiacek M. Kosowska A. Akdis C.A. Jutel M. Advances and highlights in asthma in 2021. Allergy 2021 76 11 3390 3407 10.1111/all.15054 34392546
    [Google Scholar]
  9. Alwarith J. Kahleova H. Crosby L. Brooks A. Brandon L. Levin S.M. Barnard N.D. The role of nutrition in asthma prevention and treatment. Nutr. Rev. 2020 78 11 928 938 10.1093/nutrit/nuaa005 32167552
    [Google Scholar]
  10. Singh S. Salvi S. Mangal D.K. Singh M. Awasthi S. Mahesh P.A. Kabra S.K. Mohammed S. Sukumaran T.U. Ghoshal A.G. Barne M. Sinha S. Kochar S.K. Singh N. Singh U. Patel K.K. Sharma A.K. Girase B. Chauhan A. Sit N. Siddaiah J.B. Singh V. Prevalence, time trends and treatment practices of asthma in India: The Global Asthma Network study. ERJ Open Res. 2022 8 2 00528-2021 10.1183/23120541.00528‑2021 35651368
    [Google Scholar]
  11. Wu T.D. Brigham E.P. McCormack M.C. Asthma in the primary care setting. Med. Clin. North Am. 2019 103 3 435 452 10.1016/j.mcna.2018.12.004 30955512
    [Google Scholar]
  12. Gans M.D. Gavrilova T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir. Rev. 2020 36 118 127 31678040
    [Google Scholar]
  13. Subali D. Kurniawan R. Surya R. Lee I.S. Chung S. Ko S.J. Moon M. Choi J. Park M.N. Taslim N.A. Hardinsyah H. Nurkolis F. Kim B. Kim K. Revealing the mechanism and efficacy of natural products on treating the asthma: Current insights from traditional medicine to modern drug discovery. Heliyon 2024 10 11 e32008 10.1016/j.heliyon.2024.e32008 38882318
    [Google Scholar]
  14. Brusselle G.G. Koppelman G.H. Biologic therapies for severe asthma. N. Engl. J. Med. 2022 386 2 157 171 10.1056/NEJMra2032506 35020986
    [Google Scholar]
  15. Lavorini F. Chudek J. Gálffy G. Pallarés-Sanmartin A. Pelkonen A.S. Rytilä P. Syk J. Szilasi M. Tamási L. Xanthopoulos A. Haahtela T. Switching to the dry-powder inhaler Easyhaler®: A narrative review of the evidence. Pulm. Ther. 2021 7 2 409 427 10.1007/s41030‑021‑00174‑5 34581994
    [Google Scholar]
  16. Hatazoe S. Hira D. Kondo T. Ueshima S. Okano T. Hamada S. Sato S. Terada T. Kakumoto M. Real-time particle emission monitoring for the non-invasive prediction of lung deposition via a dry powder inhaler. AAPS PharmSciTech 2024 25 5 109 10.1208/s12249‑024‑02825‑7 38730125
    [Google Scholar]
  17. Nainwal N. Sharma Y. Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb.) 2022 135 102228 10.1016/j.tube.2022.102228 35779497
    [Google Scholar]
  18. Nainwal N. Treatment of respiratory viral infections through inhalation therapeutics: Challenges and opportunities. Pulm. Pharmacol. Ther. 2022 77 102170 10.1016/j.pupt.2022.102170 36240985
    [Google Scholar]
  19. Naureen F. Shah Y. Rehman M. Chaubey P. Nair A.K. Khan J. Abdullah Shafique M. Shah K.U. Ahmad B. Inhalable dry powder nano-formulations: Advancing lung disease therapy-a review. Front. Nanotechnol. 2024 6 1403313 10.3389/fnano.2024.1403313
    [Google Scholar]
  20. Islam N. Suwandecha T. Srichana T. Dry powder inhaler design and particle technology in enhancing Pulmonary drug deposition: Challenges and future strategies. Daru 2024 32 2 761 779 10.1007/s40199‑024‑00520‑3 38861247
    [Google Scholar]
  21. Yang M.S. Kang J.H. Kim D.W. Park C.W. Recent developments in dry powder inhalation (DPI) formulations for lung-targeted drug delivery. J. Pharm. Investig. 2023 54 113 130 10.1007/s40005‑023‑00635‑w
    [Google Scholar]
  22. Michaelides K. Al Tahan M.A. Zhou Y. Trindade G.F. Cant D.J.H. Pei Y. Dulal P. Al-Khattawi A. New insights on the burst release kinetics of spray-dried PLGA microspheres. Mol Pharm. 2024 21 12 6245 6256 10.1021/acs.molpharmaceut.4c00686 39454183
    [Google Scholar]
  23. Dhoble S. Kapse A. Ghegade V. Chogale M. Ghodake V. Patravale V. Vora L.K. Design, development, and technical considerations for dry powder inhaler devices. Drug Discov. Today 2024 29 5 103954 10.1016/j.drudis.2024.103954 38531423
    [Google Scholar]
  24. Pareek A. Kothari R. Pareek A. Ratan Y. Kashania P. Jain V. Jeandet P. Kumar P. Khan A.A. Alanazi A.M. Gupta M.M. Development of a new inhaled swellable microsphere system for the dual delivery of naringenin-loaded solid lipid nanoparticles and doxofylline for the treatment of asthma. Eur. J. Pharm. Sci. 2024 193 106642 10.1016/j.ejps.2023.106642 37977235
    [Google Scholar]
  25. Mahar R. Chakraborty A. Nainwal N. The influence of carrier type, physical characteristics, and blending techniques on the performance of dry powder inhalers. J. Drug Deliv. Sci. Technol. 2022 76 103759 10.1016/j.jddst.2022.103759
    [Google Scholar]
  26. Wilkinson A. Woodcock A. The environmental impact of inhalers for asthma: A green challenge and a golden opportunity. Br. J. Clin. Pharmacol. 2022 88 7 3016 3022 10.1111/bcp.15135 34719810
    [Google Scholar]
  27. Janson C. Henderson R. Löfdahl M. Hedberg M. Sharma R. Wilkinson A.J.K. Carbon footprint impact of the choice of inhalers for asthma and COPD. Thorax 2020 75 1 82 84 10.1136/thoraxjnl‑2019‑213744 31699805
    [Google Scholar]
  28. Shetty N. Cipolla D. Park H. Zhou Q.T. Physical stability of dry powder inhaler formulations. Expert Opin. Drug Deliv. 2020 17 1 77 96 10.1080/17425247.2020.1702643 31815554
    [Google Scholar]
  29. Chrystyn H. Lavorini F. The dry powder inhaler features of the Easyhaler that benefit the management of patients. Expert Rev. Respir. Med. 2020 14 4 345 351 10.1080/17476348.2020.1721286 32013627
    [Google Scholar]
  30. Chan H.W. Chow S. Zhang X. Zhao Y. Tong H.H.Y. Chow S.F. Inhalable nanoparticle-based dry powder formulations for respiratory diseases: Challenges and strategies for translational research. AAPS PharmSciTech 2023 24 4 98 10.1208/s12249‑023‑02559‑y 37016029
    [Google Scholar]
  31. Younis U.S. Vallorz E. Addison K.J. Ledford J.G. Myrdal P.B. Preformulation and evaluation of tofacitinib as a therapeutic treatment for asthma. AAPS PharmSciTech 2019 20 5 167 10.1208/s12249‑019‑1377‑0 30993508
    [Google Scholar]
  32. Dureja H. Adams J. Löbenberg R. De Jesus Andreoli Pinto T. Dua K. Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases. Springer Nature Singapore 2023 10.1007/978‑981‑19‑7656‑8
    [Google Scholar]
  33. Nazar S. Hussain M.A. Khan A. Muhammad G. Bukhari S.N.A. Alkaloid-rich plant Tylophora indica; current trends in isolation strategies, chemical profiling and medicinal applications. Arab. J. Chem. 2020 13 8 6348 6365 10.1016/j.arabjc.2020.05.037
    [Google Scholar]
  34. Boukhatem M.N. Setzer W.N. Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: Future perspectives. Plants 2020 9 6 800 10.3390/plants9060800 32604842
    [Google Scholar]
  35. Rahman M.M. Bibi S. Rahaman M.S. Rahman F. Islam F. Khan M.S. Hasan M.M. Parvez A. Hossain M.A. Maeesa S.K. Islam M.R. Najda A. Al-malky H.S. Mohamed H.R.H. AlGwaiz H.I.M. Awaji A.A. Germoush M.O. Kensara O.A. Abdel-Daim M.M. Saeed M. Kamal M.A. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother. 2022 150 113041 10.1016/j.biopha.2022.113041 35658211
    [Google Scholar]
  36. Yong J. Shu H. Zhang X. Yang K. Luo G. Yu L. Li J. Huang H. Natural products-based inhaled formulations for treating pulmonary diseases. Int. J. Nanomedicine 2024 19 1723 1748 10.2147/IJN.S451206 38414528
    [Google Scholar]
  37. Zhang Y. Lu P. Qin H. Zhang Y. Sun X. Song X. Liu J. Peng H. Liu Y. Nwafor E.O. Li J. Liu Z. Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: Rationale and therapeutic potential. Biomed. Pharmacother. 2021 133 111072 10.1016/j.biopha.2020.111072 33378971
    [Google Scholar]
  38. Kanwal Q. Shahid S. Ahmad A. Nazir A. Yasir M. Anwar A. Alshawwa S.Z. Iqbal M. Sustainable, economical and rapid treatment of multiple lung diseases using therapeutic potential of curcumin nanoparticles. Environ. Res. 2023 233 116477 10.1016/j.envres.2023.116477 37348638
    [Google Scholar]
  39. Mehta P. Bothiraja C. Mahadik K. Kadam S. Pawar A. Phytoconstituent based dry powder inhalers as biomedicine for the management of pulmonary diseases. Biomed. Pharmacother. 2018 108 828 837 10.1016/j.biopha.2018.09.094 30372894
    [Google Scholar]
  40. Liu Y.J. Gao K.X. Peng X. Wang Y. Wang J.Y. Hu M.B. The great potential of polysaccharides from natural resources in the treatment of asthma: A review. Int. J. Biol. Macromol. 2024 260 Pt 1 129431 10.1016/j.ijbiomac.2024.129431 38237839
    [Google Scholar]
  41. Liao W. Tran Q.T.N. Peh H.Y. Chan C.C.M.Y. Fred Wong W.S. Natural products for the management of asthma and COPD. Handb Exp Pharmacol. 2024 10.1007/164_2024_709 38418669
    [Google Scholar]
  42. Varun N. Ghoroi C. Engineered inhalable micro-balloon shaped drug particles for carrier-free dry powder inhalation (DPI) application. Powder Technol. 2022 408 117705 10.1016/j.powtec.2022.117705
    [Google Scholar]
  43. Honmane S. Hajare A. More H. Osmani R.A.M. Salunkhe S. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy. J Liposome Res. 2019 29 4 332 342 10.1080/08982104.2018.1531022 30296863
    [Google Scholar]
  44. Ghoshal A. Waghray P. Dsouza G. Saluja M. Agarwal M. Goyal A. Limaye S. Balki A. Bhatnagar S. Jain M. Tikkiwal S. Vaidya A. Lopez M. Hegde R. Gogtay J. Real-world evaluation of the clinical safety and efficacy of fluticasone/formoterol FDC via the Revolizer® in patients with persistent asthma in India. Pulm. Pharmacol. Ther. 2020 60 101869 10.1016/j.pupt.2019.101869 31794836
    [Google Scholar]
  45. Hasan A. Mukherjee P. Chhowala S. Lopez M. Chhajed P.N. Small Airways, Big Problem: Extrafine beclomethasone/formoterol in asthma and chronic obstructive pulmonary disease. Lung India 2021 38 4 350 358 10.4103/lungindia.lungindia_394_20 34259174
    [Google Scholar]
  46. Liu J.X. Zhang Y. Yuan H.Y. Liang J. The treatment of asthma using the Chinese Materia Medica. J. Ethnopharmacol. 2021 269 113558 10.1016/j.jep.2020.113558 33186702
    [Google Scholar]
  47. Wang X. Zhang H. Chen L. Shan L. Fan G. Gao X. Liquorice, a unique “guide drug” of traditional Chinese medicine: A review of its role in drug interactions. J. Ethnopharmacol. 2013 150 3 781 790 10.1016/j.jep.2013.09.055 24201019
    [Google Scholar]
  48. Fouladi S. Masjedi M. Ganjalikhani Hakemi M. Eskandari N. The review of in vitro and in vivo studies over the glycyrrhizic acid as natural remedy option for treatment of allergic asthma. Iran. J. Allergy Asthma Immunol. 2019 18 1 1 11 10.18502/ijaai.v18i1.626 30848569
    [Google Scholar]
  49. Yao Z. Fu Y. Glycyrrhizic acid restrains airway inflammation and remodeling in asthma via the TGF‑β1/Smad signaling pathway. Exp. Ther. Med. 2021 21 5 461 10.3892/etm.2021.9892 33747193
    [Google Scholar]
  50. Lee S.Y. Kang B. Bok S.H. Cho S.S. Park D.H. Macmoondongtang modulates Th1-/Th2-related cytokines and alleviates asthma in a murine model. PLoS One 2019 14 12 e0224517 10.1371/journal.pone.0224517 31790411
    [Google Scholar]
  51. Amin A.H. Shirode U.R. Sherov A.G. Abo-Zaid M.A. Ismail A.H. Tilwani S.A. Ameliorative effects of Glycyrrhiza glabra L. (licorice) on animal and human pulmonary fibrosis: A review of current knowledge. Caspian J. Environ. Sci. 2024 1 13 https://cjes.guilan.ac.ir/article_8133.html [Internet].
    [Google Scholar]
  52. Pashkina E. Bykova M. Krugleeva O. Kozlov V. Delivery systems using glycyrrhizic acid for allergen-specific immunotherapy. ERHM 2024 9 2 154 161 10.14218/ERHM.2023.00063
    [Google Scholar]
  53. Sun X. Nasab E.M. Athari S.M. Athari S.S. Anti-inflammatory effect of herbal traditional medicine extract on molecular regulation in allergic asthma. Allergol. Select 2021 5 1 148 156 10.5414/ALS400545 33884360
    [Google Scholar]
  54. Chrzanowski J. Chrzanowska A. Graboń W. Glycyrrhizin: An old weapon against a novel coronavirus. Phytother. Res. 2021 35 2 629 636 10.1002/ptr.6852 32902005
    [Google Scholar]
  55. Mahar R. Chakraborty A. Nainwal N. Formulation of resveratrol-loaded polycaprolactone inhalable microspheres using tween 80 as an Emulsifier: Factorial design and optimization. AAPS PharmSciTech 2023 24 5 131 10.1208/s12249‑023‑02587‑8 37291478
    [Google Scholar]
  56. Vishwa B. Moin A. Gowda D.V. Rizvi S.M.D. Hegazy W.A.H. Abu Lila A.S. Khafagy E.S. Allam A.N. Pulmonary targeting of inhalable moxifloxacin microspheres for effective management of tuberculosis. Pharmaceutics 2021 13 1 79 10.3390/pharmaceutics13010079 33430162
    [Google Scholar]
  57. Shaji J. Shaikh M. Formulation, optimization, and characterization of biocompatible inhalable D-cycloserine-loaded alginate-chitosan nanoparticles for pulmonary drug delivery. Asian J. Pharm. Clin. Res. 2016 9 82 95 10.22159/ajpcr.2016.v9s2.11814
    [Google Scholar]
  58. Sharma Y. Mahar R. Chakraborty A. Nainwal N. Optimizing the formulation variables for encapsulation of linezolid into polycaprolactone inhalable microspheres using double emulsion solvent evaporation. Tuberculosis (Edinb.) 2023 143 102417 10.1016/j.tube.2023.102417 37827017
    [Google Scholar]
  59. Pardeshi C.V. Rajput P.V. Belgamwar V.S. Tekade A.R. Surana S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: Application of factorial design approach. Drug Deliv. 2013 20 1 47 56 10.3109/10717544.2012.752421 23311653
    [Google Scholar]
  60. Li J. Zheng H. Xu E.Y. Moehwald M. Chen L. Zhang X. Mao S. Inhalable PLGA microspheres: Tunable lung retention and systemic exposure via polyethylene glycol modification. Acta Biomater. 2021 123 325 334 10.1016/j.actbio.2020.12.061 33454386
    [Google Scholar]
  61. Huang J. Chen Z. Ying L. Li L. Zhang G. Rifapentine-linezolid-loaded PLGA microspheres for interventional therapy of cavitary pulmonary tuberculosis: Preparation and in vitro characterization. Drug Des. Devel. Ther. 2017 11 585 592 10.2147/DDDT.S127897 28424536
    [Google Scholar]
  62. Vadakkan M.V. Annapoorna K. Sivakumar K.C. Mundayoor S. Kumar G.S.V. Dry powder cationic lipopolymeric nanomicelle inhalation for targeted delivery of antitubercular drug to alveolar macrophage. Int J Nanomedicine 2013 8 2871 2885 10.2147/IJN.S47456 23990716
    [Google Scholar]
  63. Wang L. Yang M. Qiao Y. Olson B.A. Hogan C.J. Jr Raynor P.C. Goyal S.M. Torremorell M. Evaluation of coating materials on the characterization of size and viability of virus-laden particles collected with an Andersen cascade impactor. J. Aerosol Sci. 2024 182 106454 10.1016/j.jaerosci.2024.106454
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073333147250127053403
Loading
/content/journals/cchts/10.2174/0113862073333147250127053403
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: dry powder inhaler ; Asthma ; glycyrrhizin ; optimization ; microspheres
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test