Skip to content
2000
image of Study on the Antidepressant Effect of Zhizichi Decoction by Regulating Metabolism and Intestinal Flora

Abstract

Background

The incidence of depression is increasing year by year, and Zhizichi Decoction(ZZCD)has shown significant efficiency in the clinical treatment of mild depression, but its mechanism of action is still unclear. In this research, network pharmacology and metagenomics combined and metabolomics were used as research methods to explain the scientific connotation of the antidepressant effect of ZZCD from the aspects of the overall effect of organisms and microbial structure and function.

Methods

The rat model of depression was established by chronic unpredictable mild stress (CUMS), and the improvement of depressive symptoms was evaluated by behavioral and histopathological methods. Network pharmacology predicted possible targets and important pathways of ZZCD. Metabolomics revealed its possible related biological pathways. Metagenomics showed the disturbance of ZZCD on intestinal microbial diversity structure and associated biological functions in depressed rats.

Results

ZZCD can improve the behavioral performance of CUMS rats, and can significantly regulate the content of 5-HT, NE and other neurotransmitters in serum and brain tissue, and improve the damaged state of neurons in the hippocampus. Network pharmacology predicts that it mainly acts on biological processes such as inflammatory response and oxidative stress response. Metabolomics found that it affected metabolic pathways such as amino acid metabolism and lipid metabolism. The results of metagenomics showed that it significantly regulated the abundance of Firmicutes and Bacteroidetes. The above results predicted that it may affect signaling pathways such as the nervous system, inflammatory diseases and cell processing.

Conclusion

ZZCD may play an antidepressant role by regulating intestinal probiotics, energy metabolism, and inflammation reduction. This provides a scientific basis for the clinical application of ZZCD in traditional Chinese medicine and also makes it an optional alternative for the treatment of depression.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073312654240918072945
2024-10-03
2024-11-22
Loading full text...

Full text loading...

References

  1. Cai N. Choi K.W. Fried E.I. Reviewing the genetics of heterogeneity in depression: operationalizations, manifestations and etiologies. Hum. Mol. Genet. 2020 29 R1 R10 R18 10.1093/hmg/ddaa115 32568380
    [Google Scholar]
  2. Sharma B. Khushboo Siddiqi N.J. Pathophysiology of SARS-CoV2 Mediated Depression, Therapeutics, and Consequences: A Comprehensive Narrative. Mini Rev. Med. Chem. 2023 23 2 217 229 10.2174/1381612828666220603150637 35658879
    [Google Scholar]
  3. Zhang Y. Fang Y.C. Cui L.X. Jiang Y.T. Luo Y.S. Zhang W. Yu D.X. Wen J. Zhou T.T. Zhi-Zi-Chi Decoction Reverses Depressive Behaviors in CUMS Rats by Reducing Oxidative Stress Injury Via Regulating GSH/GSSG Pathway. Front. Pharmacol. 2022 13 887890 10.3389/fphar.2022.887890 35462900
    [Google Scholar]
  4. Gao F.Y. Chen X.F. Cui L.X. Zhai Y.J. Liu J.L. Gao C.C. Fang Y.C. Huang T.H. Wen J. Zhou T.T. Gut microbiota mediates the pharmacokinetics of Zhi-zi-chi decoction for the personalized treatment of depression. J Ethnopharmacol. 2023 302 Pt B 115934 10.1016/j.jep.2022.115934
    [Google Scholar]
  5. Zheng P. Zeng B. Zhou C. Liu M. Fang Z. Xu X. Zeng L. Chen J. Fan S. Du X. Zhang X. Yang D. Yang Y. Meng H. Li W. Melgiri N.D. Licinio J. Wei H. Xie P. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016 21 6 786 796 10.1038/mp.2016.44 27067014
    [Google Scholar]
  6. Bear T.L.K. Dalziel J.E. Coad J. Roy N.C. Butts C.A. Gopal P.K. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv. Nutr. 2020 11 4 890 907 10.1093/advances/nmaa016 32149335
    [Google Scholar]
  7. Begum N. Mandhare A. Tryphena K.P. Srivastava S. Shaikh M.F. Singh S.B. Khatri D.K. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front. Aging Neurosci. 2022 14 1048333 10.3389/fnagi.2022.1048333 36583185
    [Google Scholar]
  8. Tian X. Wang G. Teng F. Xue X. Pan J. Mao Q. Guo D. Song X. Ma K. Zhi Zi Chi decoction (Gardeniae fructus and semen Sojae Praeparatum) attenuates anxious depression via modulating microbiota-gut-brain axis in corticosterone combined with chronic restraint stress-induced mice. CNS Neurosci. Ther. 2023 37905694
    [Google Scholar]
  9. Liu M.Y. Yin C.Y. Zhu L.J. Zhu X.H. Xu C. Luo C.X. Chen H. Zhu D.Y. Zhou Q.G. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat. Protoc. 2018 13 7 1686 1698 10.1038/s41596‑018‑0011‑z 29988104
    [Google Scholar]
  10. Linodeoliveira C. Lima T. Carobrez A. Structure of the rat behaviour in the forced swimming test. Behav. Brain Res. 2005 158 2 243 250 10.1016/j.bbr.2004.09.004 15698890
    [Google Scholar]
  11. Gao X.F. Wang X.Q. He C. Lu C.L. [Progress of monoaminergic receptor investigation on depression]. Sheng Li Ke Xue Jin Zhan 2002 33 1 17 20 12001723
    [Google Scholar]
  12. Ye-hao Z. Wei-hong C. Jian-xun L. Effect of crocin on mitochondrial dynamics in SH-SY5Y cells against injury induced by oxygen-glucose deprivation. Zhongguo Yaolixue Tongbao 2016 32 07 991 997
    [Google Scholar]
  13. Simmler L.D. Li Y. Hadjas L.C. Hiver A. van Zessen R. Lüscher C. Dual action of ketamine confines addiction liability. Nature 2022 608 7922 368 373 10.1038/s41586‑022‑04993‑7 35896744
    [Google Scholar]
  14. Khushboo Kumar A. Sharma B. Biomedical Implications of Plant-based Principles as Antidepressants: Prospects for Novel Drug Development. Mini Rev. Med. Chem. 2022 22 6 904 926 10.2174/1389557521666210415112601 33858313
    [Google Scholar]
  15. Liang S. Wu X. Hu X. Wang T. Jin F. Recognizing Depression from the Microbiota–Gut–Brain Axis. Int. J. Mol. Sci. 2018 19 6 1592 10.3390/ijms19061592 29843470
    [Google Scholar]
  16. Yan-xia Z. Gui-qing Z. Ning R. Min H. Qian Z. Refractory depression: changes of plasma monoamine neurotransmitter metabolite before and after treatment. Xiandai Shengwu Yixue Jinzhan 2011 11 07 1352 1354
    [Google Scholar]
  17. Zongyu P. Rui P. Erlong Z. In vitro regulation in signal transduction of central nerve cells. China Journal of Health Psychology 2013 21 06 948 953
    [Google Scholar]
  18. Lee A.L. Ogle W.O. Sapolsky R.M. Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord. 2002 4 2 117 128 10.1034/j.1399‑5618.2002.01144.x 12071509
    [Google Scholar]
  19. Canet G. Chevallier N. Zussy C. Desrumaux C. Givalois L. Central Role of Glucocorticoid Receptors in Alzheimer’s Disease and Depression. Front. Neurosci. 2018 12 739 10.3389/fnins.2018.00739 30459541
    [Google Scholar]
  20. Yang L.M. Yu L. Jin H.J. Zhao H. Substance P receptor antagonist in lateral habenula improves rat depression-like behavior. Brain Res. Bull. 2014 100 22 28 10.1016/j.brainresbull.2013.10.007 24157953
    [Google Scholar]
  21. Pan H.T. Xi Z.Q. Wei X.Q. Wang K. A network pharmacology approach to predict potential targets and mechanisms of “ Ramulus Cinnamomi (cassiae) – Paeonia lactiflora ” herb pair in the treatment of chronic pain with comorbid anxiety and depression. Ann. Med. 2022 54 1 413 425 10.1080/07853890.2022.2031268 35098831
    [Google Scholar]
  22. Liu C. Yan L. Qian Y. Song P. Wang T. Wei M. The Extract of Acanthopanacis Cortex Relieves the Depression-Like Behavior and Modulates IL-17 Signaling in Chronic Mild Stress-Induced Depressive Mice. Dose Response 2023 21 1 10.1177/15593258221148817 36865497
    [Google Scholar]
  23. Zhang W. Yu M. Zhang Q. Yang Z. Zhang T. DFO treatment protects against depression-like behaviors and cognitive impairment in CUMS mice. Brain Res. Bull. 2022 187 75 84 10.1016/j.brainresbull.2022.06.016 35779818
    [Google Scholar]
  24. Calder P.C. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006 83 6 Suppl. 1505S 1519S 10.1093/ajcn/83.6.1505S 16841861
    [Google Scholar]
  25. Blanchard H. Chang L. Rezvani A.H. Rapoport S.I. Taha A.Y. Brain Arachidonic Acid Incorporation and Turnover are not Altered in the Flinders Sensitive Line Rat Model of Human Depression. Neurochem. Res. 2015 40 11 2293 2303 10.1007/s11064‑015‑1719‑6 26404538
    [Google Scholar]
  26. Tsuchimine S. Saito M. Kaneko S. Yasui-Furukori N. Decreased serum levels of polyunsaturated fatty acids and folate, but not brain-derived neurotrophic factor, in childhood and adolescent females with depression. Psychiatry Res. 2015 225 1-2 187 190 10.1016/j.psychres.2014.11.018 25466229
    [Google Scholar]
  27. Müller C.P. Reichel M. Mühle C. Rhein C. Gulbins E. Kornhuber J. Brain membrane lipids in major depression and anxiety disorders. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015 1851 8 1052 1065 10.1016/j.bbalip.2014.12.014 25542508
    [Google Scholar]
  28. Rybakina E.G. Shanin S.N. Fomicheva E.E. Korneva E.A. [Cellular and molecular mechanisms of interaction between the neuroendocrine and immune systems under chronic fatigue syndrome in experiment]. Fiziol. Zh. Im. I M Sechenova 2009 95 12 1324 1335 [Cellular and molecular mechanisms of interaction between the neuroendocrine and immune systems under chronic fatigue syndrome in experiment]. 20141043
    [Google Scholar]
  29. Wen Z. Liu H. Li M. Li B. Gao W. Shao Q. Fan B. Zhao F. Wang Q. Xie Q. Yang Y. Yu J. Qu X. Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene 2015 34 10 1241 1252 10.1038/onc.2014.85 24662827
    [Google Scholar]
  30. Gao Y. Xu T. Zhao Y.X. Ling-Hu T. Liu S.B. Tian J.S. Qin X.M. A Novel Network Pharmacology Strategy to Decode Metabolic Biomarkers and Targets Interactions for Depression. Front. Psychiatry 2020 11 667 10.3389/fpsyt.2020.00667 32760300
    [Google Scholar]
  31. Rea K. Dinan T.G. Cryan J.F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress 2016 4 23 33 10.1016/j.ynstr.2016.03.001 27981187
    [Google Scholar]
  32. Miller A.H. Maletic V. Raison C.L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 2009 65 9 732 741 10.1016/j.biopsych.2008.11.029 19150053
    [Google Scholar]
  33. Treadway M.T. Cooper J.A. Miller A.H. Can’t or Won’t? Immunometabolic Constraints on Dopaminergic Drive. Trends Cogn. Sci. 2019 23 5 435 448 10.1016/j.tics.2019.03.003 30948204
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073312654240918072945
Loading
/content/journals/cchts/10.2174/0113862073312654240918072945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test