Skip to content
2000
image of Green Synthesis of New Derivatives of Iminothiazole Using Cefixime and Removing Organic Pollutants from Aqueous Environment by Employing Cu@KF/Clinoptilolite NPs

Abstract

Aims and Objective

In this research, multicomponent reactions of cefixime, isothiocyanates, and alkyl bromides were carried out for the synthesis of new iminothiazole derivatives with high yields in water as the solvent at room temperature in the presence of catalytic amounts of Cu@KF/CP NPs as catalysts. Also, the ability of Cu@KF/Clinoptilolite nanoparticles (NPs) to adsorb and remove 4-NP and cefixime from water was investigated. The Cu@KF/Clinoptilolite nanoparticles were synthesized by employing a water extract of rhizomes.

Materials and Methods

For this experiment, all of the components obtained from Fluka and Merck were subjected to further purification. The antibiotic used in this investigation, cefixime, was obtained from a pharmaceutical facility situated in Sari, Mazandaran, Iran. The antibiotic factory is located in Sari City, Iran. All solutions were prepared using distilled water. The shape of Cu@KF/CP nanoparticles was analyzed using images obtained from a Holland Philips XL30 scanning electron microscope. An analysis was performed on the crystalline structure of Cu@KF/CP nanoparticles (NPs), and a room temperature X-ray diffraction (XRD) examination was carried out utilizing a Holland Philips Xpert X-ray powder diffractometer. The X-ray diffraction (XRD) examination was conducted using CuK radiation, which has a wavelength of 0.15406 nm. The analysis covered a 2ε angle range from 20 to 80°. The nanostructures that were produced were chemically analyzed using X-ray energy dispersive spectroscopy (EDS) with an S3700N equipment. The morphology and dimensions of Cu@KF/CP nanoparticles were characterized using a Philips EM208 transmission electron microscope operated at an acceleration voltage of 90 kV.

Results

The primary objective of this study was to develop a sustainable approach for producing new iminothiazole derivatives . This was achieved using a highly efficient three-component reaction combining cefixime , isothiocyanates , and alkyl bromides . The reaction was carried out in water at ambient temperature, using Cu@KF/CP NPs as a highly effective catalyst, leading to excellent yields. Moreover, the study findings showed that the synthesized compounds demonstrated a significant antioxidant activity compared to conventional antioxidants. The antibacterial efficacy of the synthesized compounds was evaluated against both Gram-positive and Gram-negative bacteria. Furthermore, Cu@KF/CP nanoparticles were utilized to adsorb CFX and 4-NP from water-based solutions.

Conclusion

This study showcases the effective synthesis of innovative iminothiazole derivatives through the use of multicomponent reactions, involving the combination of cefixime, isothiocyanates, and alkyl bromides. The reactions were conducted in a water-based solvent. The reactions were carried out at room temperature, utilizing Cu@KF/CP NPs as catalysts. The Cu@KF/CP nanoparticles, a newly developed heterogeneous nanocatalyst, were synthesized and evaluated utilizing X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) research techniques. Cu@KF/CP nanoparticles are utilized to adsorb CFX and 4-NP from water-based solutions. The objects were manufactured using a straightforward and uncomplicated approach. The BET surface area of Cu@KF/CP NPs was measured to be 201.8 m2/g. The experimental equilibrium data was evaluated by applying the isotherms of the Langmuir, Freundlich, Dubinin-Radushkevich, and Redlich-Peterson models. Additionally, we examined the catalytic efficiency of Cu@KF/CP nanoparticles (NPs) in reducing various colors in water.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073298128240918110357
2024-10-07
2024-11-22
Loading full text...

Full text loading...

References

  1. Kalaria P.N. Karad S.C. Raval D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antima-larial drug discovery. Eur. J. Med. Chem. 2018 158 917 936 10.1016/j.ejmech.2018.08.040 30261467
    [Google Scholar]
  2. Desai N. Trivedi A. Pandit U. Dodiya A. Kameswara Rao V. Desai P. Hybrid Bioactive Heterocycles as Potential Antimicrobial Agents: A Review. Mini Rev. Med. Chem. 2016 16 18 1500 1526 10.2174/1389557516666160609075620 27292782
    [Google Scholar]
  3. Fouad M.M. El-Bendary E.R. suddek, G.M.; Shehata, I.A.; El-Kerdawy, M.M. Synthesis and in vitro antitumor evalua-tion of some new thiophenes and thieno[2,3-d]pyrimidine de-rivatives. Bioorg. Chem. 2018 81 587 598 10.1016/j.bioorg.2018.09.022 30248510
    [Google Scholar]
  4. Martins P. Jesus J. Santos S. Raposo L. Roma-Rodrigues C. Baptista P. Fernandes A. Heterocyclic Anti-cancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015 20 9 16852 16891 10.3390/molecules200916852 26389876
    [Google Scholar]
  5. Bawa S. Siddiqui N. Andalip; Ali, R.; Afzal, O.; Akhtar, M.J.; Azad, B.; Kumar, R. Antidepressant potential of nitro-gen-containing heterocyclic moieties: An updated review. J. Pharm. Bioallied Sci. 2011 3 2 194 212 10.4103/0975‑7406.80765 21687347
    [Google Scholar]
  6. Sokolova A.S. Yarovaya O.I. Bormotov N.I. Shishkina L.N. Salakhutdinov N.F. Synthesis and antiviral activity of camphor-based 1,3-thiazolidin-4-one and thiazole derivatives as Orthopoxvirus -reproduction inhibitors. MedChemComm 2018 9 10 1746 1753 10.1039/C8MD00347E 30429979
    [Google Scholar]
  7. Goel A. Agarwal N. Singh F.V. Sharon A. Tiwari P. Dixit M. Pratap R. Srivastava A.K. Maulik P.R. Ram V.J. Antihyperglycemic activity of 2-methyl-3,4,5-triaryl-1 H -pyrroles in SLM and STZ models. Bioorg. Med. Chem. Lett. 2004 14 5 1089 1092 10.1016/j.bmcl.2004.01.009
    [Google Scholar]
  8. Amir M. Javed S.A. Kumar H. Pyrimidine as antiinflam-matory agent: A review. Indian J. Pharm. Sci. 2007 69 3 337 343 10.4103/0250‑474X.34540
    [Google Scholar]
  9. Li W. Zhao S.J. Gao F. Lv Z.S. Tu J.Y. Xu Z. Synthe-sis and In Vitro Anti‐Tumor, Anti‐Mycobacterial and Anti‐HIV Activities of Diethylene‐Glycol‐Tethered Bis‐Isatin De-rivatives. ChemistrySelect 2018 3 36 10250 10254 10.1002/slct.201802185
    [Google Scholar]
  10. Zhao X. Chaudhry S.T. Mei J. Heterocyclic building blocks for organic semiconductors. Heterocyc. Chem. 21st Cent.Trib. Alan Katritzky 2017 121 133 171 10.1016/bs.aihch.2016.04.009
    [Google Scholar]
  11. Khattab T.A. Rehan M.A. Egypt. J. Chem. 2018 61 989 1018
    [Google Scholar]
  12. Lamberth C. Dinges J. Bioactive heterocyclic compound classes: agrochemicals; Wiley-VCH Verlag GmbH & Co, KGaA 2012 10.1002/9783527664412
    [Google Scholar]
  13. Zhi S. Ma X. Zhang W. Consecutive multicomponent reac-tions for the synthesis of complex molecules. Org. Biomol. Chem. 2019 17 33 7632 7650 10.1039/C9OB00772E 31339143
    [Google Scholar]
  14. Ibarra I.A. Islas-Jácome A. González-Zamora E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem. 2018 16 9 1402 1418 10.1039/C7OB02305G 29238790
    [Google Scholar]
  15. Tietze L.F. Bsasche C. Gericke K.M. Domino reactions in organic synthesis; Wiley-VCH: Weinheim 2006 10.1002/9783527609925
    [Google Scholar]
  16. b Karami Hezarcheshmeh, N.; Azizian, J. Regioselective One-Pot Synthesis and Antioxidant Activity Study of Trichloro Isatins and Dichloro Isatins. Polycycl. Aromat. Compd. 2022 42 10 7686 7696 10.1080/10406638.2021.2006250
    [Google Scholar]
  17. c Hezarcheshmeh, N.K.; Azizian, J. Solvent-free synthesis of new spiropyrroloindole compounds using Fe3O4/TiO2/MWCNTs MNCs via multicomponent reactions: assessment of new spiropyrroloindole antioxidant activity. Mol. Divers. 2022 26 4 2011 2024 10.1007/s11030‑021‑10311‑6 35102474
    [Google Scholar]
  18. Weber L. Illgen K. Almstetter M. Discovery of New Multi Component Reactions with Combinatorial Methods. Synlett 1999 1999 3 366 374 10.1055/s‑1999‑2612
    [Google Scholar]
  19. de Santana T.I. Barbosa M.O. Gomes P.A.T.M. da Cruz A.C.N. da Silva T.G. Leite A.C.L. Synthesis, anticancer ac-tivity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem. 2018 144 874 886 10.1016/j.ejmech.2017.12.040 29329071
    [Google Scholar]
  20. Ali S.H. Sayed A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun. 2020 50 670 700
    [Google Scholar]
  21. Metzger J.V. Comprehensive Heterocyclic Chemistry. Elsevier Science Ltd 1984
    [Google Scholar]
  22. Ayati A. Emami S. Asadipour A. Shafiee A. Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem. 2015 97 699 718 10.1016/j.ejmech.2015.04.015 25934508
    [Google Scholar]
  23. Rouf A. Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem. 2015 97 911 927 10.1016/j.ejmech.2014.10.058 25455640
    [Google Scholar]
  24. Morigi R. Locatelli A. Leoni A. Rambaldi M. Recent patents on thiazole derivatives endowed with antitumor activi-ty. Rec.Pat. Anti-cancer drug discov. 2015 10 260 297
    [Google Scholar]
  25. Diurno M.V. Mazzoni O. Piscopo E. Calignano A. Giordano F. Bolognese A. Synthesis and antihistaminic ac-tivity of some thiazolidin-4-ones. J. Med. Chem. 1992 35 15 2910 2912 10.1021/jm00093a025 1353796
    [Google Scholar]
  26. Omarx A-M.M.E. Eshba N.H. Synthesis and biological evaluation of new 2,3-dihydrothiazole derivatives for antimi-crobial, antihypertensive, and anticonvulsant activities. J. Pharm. Sci. 1984 73 8 1166 1168 10.1002/jps.2600730837 6491928
    [Google Scholar]
  27. Chaudhary M. Parmar S.S. Chaudhary S.K. Chaturvedi A.K. Sastry B.V.R. CNS depressant activity of pyrimidylthi-azolidones and their selective inhibition of NAD-dependent pyruvate oxidation. J. Pharm. Sci. 1976 65 3 443 446 10.1002/jps.2600650336 177752
    [Google Scholar]
  28. Hassan H.Y. El-KOUSSI N.A. Farghaly Z.S. Synthesis and antimicrobial activity of pyridines bearing thiazoline and thia-zolidinone moieties. Chem. Pharm. Bull. (Tokyo) 1998 46 5 863 866 10.1248/cpb.46.863 9621420
    [Google Scholar]
  29. Turan-Zitouni G. Sıvacı D.M. Kaplancıklı Z.A. Özdemir A. Synthesis and antimicrobial activity of some pyridinylimi-nothiazoline derivatives. Farmaco 2002 57 7 569 572 10.1016/S0014‑827X(02)01250‑8 12164216
    [Google Scholar]
  30. Bonde C.G. Gaikwad N.J. Synthesis and preliminary eval-uation of some pyrazine containing thiazolines and thiazoli-dinones as antimicrobial agents. Bioorg. Med. Chem. 2004 12 9 2151 2161 10.1016/j.bmc.2004.02.024 15080915
    [Google Scholar]
  31. Fritch P.C. McNaughton-Smith G. Amato G.S. Burns J.F. Eargle C.W. Roeloffs R. Harrison W. Jones L. Wick-enden A.D. Novel KCNQ2/Q3 agonists as potential therapeu-tics for epilepsy and neuropathic pain. J. Med. Chem. 2010 53 2 887 896 10.1021/jm901497b 20020710
    [Google Scholar]
  32. Bodtke A. Pfeiffer W.D. Ahrens N. Langer P. Peroxidase catalyzed formation of azine pigments—a convenient and sensitive method for the identification of human cells with positive myeloperoxidase reactivity. Bioorg. Med. Chem. Lett. 2004 14 6 1509 1511 10.1016/j.bmcl.2004.01.001 15006392
    [Google Scholar]
  33. a Lihumis H.S. Synthesis and diagnosis of triazole and oxirane derivatives from hydroxyquioline with evaluating their biological and antioxidant activity. J. Med. Pharm. Chem. Res. 2023 5 466 482
    [Google Scholar]
  34. b Doaa H.A. Anti-corrosion and antioxidant activities of new synthesised oxazepine and thaizolidinone derivatives linking to imidazo/pyridine. J. Med. Pharm. Chem. Res. 2023 5 343 357
    [Google Scholar]
  35. c Biosynthesis of copper oxide nanoparticles using Asper-gillus niger extract and their antibacterial and antioxidant ac-tivities. J. Med. Pharm. Chem. Res. 2023 5 598 608
    [Google Scholar]
  36. d Rajab N.A. Synthesis, in silico ADMET, docking, antiox-idant, antibacterial and antifungal evaluations of some pyrim-idine derivatives. J. Med. Pharm. Chem. Res. 2023 5 216 227
    [Google Scholar]
  37. a Sohrabi-Kashani L. Zolriasatein A. Yekta B.E. Effect of silica nanoparticles modified with different concen-trations of stearic acid on microstructure, mechanical & elec-trical properties of RTV-2 silicone rubber nanocomposite. Journal of Medicinal and Nanomaterials Chemistry 2023 2 16 32
    [Google Scholar]
  38. b Pourfaraj H. Mansour S.R. Zaefizadeh M. Vojood A. Synthesis and Characterization of Cisplatin Magnetic Nano-composite. Journal of Medicinal and Nanomaterials Chemis-try 2023 1 92 105
    [Google Scholar]
  39. c Ghiasi R. Faegheh A.K.K. Theoretical insights of the electronic structures, conductivity, and aromaticiy of Graphyne and Si-doped Graphynes. Journal of Medicinal and Nanomaterials Chemistry 2022 4 303 312
    [Google Scholar]
  40. d Baghernejad B. Zakariayi A. One-Pot synthesis of oxin-doles derivatives as effective antimicrobial agents by Nano-Magnesium aluminate as an effective aatalyst. Journal of Me-dicinal and Nanomaterials Chemistry 2022 3 225 233
    [Google Scholar]
  41. a Seyedeh Shahrzad Moayeripour, Roozbeh Behzadi, Experimental investigation of the effect of titanium nano-particles on the properties of hydrophobic self-cleaning film. J. Med. Pharm. Chem. Res. 2023 5 303 316
    [Google Scholar]
  42. b Zeena A.A. Anticorrosion activity of some new heterocy-clic link with imidazo[2,1-b]benzthiazole. J. Med. Pharm. Chem. Res. 2023 5 271 281
    [Google Scholar]
  43. c Shamsalmiluk M.A. Synthesis of new 1,2,4-triazole de-rivatives with expected biological activities. Chem. Methodol. 2022 6 59 66
    [Google Scholar]
  44. d Fazeli-Nasab B. Shahraki-Mojahed L. Beigomi Z. Beigomi M. Pahlavan A. Rapid detection methods of pesti-cides residues in vegetable foods. Chem. Methodol. 2022 6 24 40
    [Google Scholar]
  45. a Fayyadh Abed Nashaan, Muna Sameer Al-Rawi De-sign, Synthesis, and Biological Activity of New Thiazolidine-4-One Derived from Symmetrical 4-Amino-1,2,4-Triazole. Chem. Methodol. 2023 7 106 111
    [Google Scholar]
  46. b Fayyadh Abed Nashaan, Muna Sameer Al-Rawi, Synthe-sis and Antimicrobial Activity of New 4-Fromyl Pyrazole De-rivatives Drived from Galloyl Hydrazide. Chem. Methodol. 2023 7 266 275
    [Google Scholar]
  47. c Saad Salem Jasim, Jawdat Hilmi Abdulwahid, Shakhawan Beebany, Bari Lateef Mohammed, Synthesis, Identification, and Antibacterial Effect Assessment of Some New 1,4-Thiazepines, Derived from Substituted Diphenyl Acrylamides and Diphenyl Dienones. Chem. Methodol. 2023 7 509 523
    [Google Scholar]
  48. a Mohammad M. Al-Tufah, Shakhawan Beebaeny, Saad Salem Jasim, Bari Lateef Mohammed, Synthesis, Char-acterization of Ethyl Dioxoisoindolinyl Cyclohexenone Car-boxylate Derivatives from Some Chalcones and its Biological Activity Assessment. Chem. Methodol. 2023 7 408 418
    [Google Scholar]
  49. b Israa S.G. Synthesis of a New Copoly 1,3,4-Oxadiazole from Copoly Imine with Iodine and Study of Their Biological Activity. Chem. Methodol. 2022 6 446 456
    [Google Scholar]
  50. c Mohammed R. Characterization, thermal analysis and bioactivity of some transition metals complexes with new Azo Ligand. Chem. Methodol. 2022 6 475 493
    [Google Scholar]
  51. d Tahmineh K. Synthesis, Characterization, and Antimicro-bial Studies on a New Schiff Base Complex of Vanadium (V). Chem. Methodol. 2023 7 748 760
    [Google Scholar]
  52. a Camelia G. A New and Safe Spirocyclic Alkoxy Phosphazene: Synthesis, Characterization, DFT, Molecular Docking and Photophysical Properties. Chem. Methodol. 2023 7 944 963
    [Google Scholar]
  53. b Zainab A.K. Al-Messri Synthesis, Characterization, and Effectiveness of Pyranopyrimidine Derivatives as Multi-function Additive for Lubricating Oils. Chem. Methodol. 2023 7 581 593
    [Google Scholar]
  54. c Patil A. Patil Green Synthesis of Gold Nanoparticles using Extract of Vitis vinifera, Buchananialanzan, Juglandaceae, Phoenix Dactylifera Plants, and Evaluation of Antimicrobial Activity. Chem. Methodol. 2023 7 15 27
    [Google Scholar]
  55. d Yamama Z. Jasim Study of Some Heterocyclic Com-pounds Made from a New 4(3H)-Quinazolinone and Their Biological and Antioxidant Activities. Chem. Methodol. 2023 7 372 382
    [Google Scholar]
  56. a Adsorption of Transition Metal Cations (Cr2+, Mn2+, Fe2+, Cu+, Ag+ and Au+) on Boron Nitride Nanotube: Structur-al Analysis and Electronic Properties. Advanced Journal of Chemistry, Section A 2024 7 355 373
    [Google Scholar]
  57. b Alirezapour F. Mohammadi M. Khanmohammadi A. Exploration of the mutual effects between cation–π and in-tramolecular hydrogen bond interactions in the different complexes of mesalazine with metal cations of alkali and al-kaline-earth: a DFT study. Chemical Review and Letters 2023 6 262 275
    [Google Scholar]
  58. c Alirezapour F. Bamdad K. Khanmohammadi A. Ebrahimi N. A computational study on acetaminophen drug complexed with Mn+, Fe2+, Co+, Ni2+, and Cu+ ions: structural analysis, electronic properties, and solvent effects. J. Mol. Model. 2022 28 10 302 10.1007/s00894‑022‑05305‑6 36066774
    [Google Scholar]
  59. d Razavizadeh A Alirezapoor F Volumetric properties of high temperature, high pressure supercritical fluids from im-proved van der Waals equation of state. Iranian chem. commun. 6 209 217
    [Google Scholar]
  60. a Mohammadi M. Hekmatara S.H. Moghaddam R.S. Darehkordi A. Preparation and optimization photocatalytic activity of polymer-grafted Ag@AgO core-shell quantum dots. Environ. Sci. Pollut. Res. Int. 2019 26 13 13401 13409 10.1007/s11356‑019‑04685‑2 30905020
    [Google Scholar]
  61. b Ebrahimi A. Habibi S.M. Sanati A. Mohammadi M. A comparison of C–C rotational barrier in [2]staffane, [2]tetrahedrane and ethane. Chem. Phys. Lett. 2008 466 1-3 32 36 10.1016/j.cplett.2008.10.037
    [Google Scholar]
  62. c Anary-Abbasinejada M. Nezhad-Shshrokhabadi F. Mohammadi M. A green method for the synthesis of pyrrole derivatives using arylglyoxals, 1, 3-diketones and enamino-ketones in water or water–ethanol mixture as solvent. Mol. Divers. 2019 2019 1 18 31485891
    [Google Scholar]
  63. d Kamel M. Mohammadi M. Mohammadifard K. Mahmood E.A. Heravi M.R.P. Comprehensive theoretical prediction of the stability and electronic properties of hy-droxyurea and carmustine drugs on pristine and Chitosan-functionalized graphitic carbon. Vacuum 2023 207 111565 10.1016/j.vacuum.2022.111565
    [Google Scholar]
  64. a Sheikholeslami-Farahani F. Ghazvini M. Soleimani-Amiri S. Salimifard M. Rostamian R. Green Synthesis of Pyrido[2,1-a]isoquinolines and Pyrido[1,2-a]quinolines by Using ZnO Nanoparticles. Synlett 2018 29 4 493 496 10.1055/s‑0036‑1591509
    [Google Scholar]
  65. b Taheri Hatkehlouei S.F. Mirza B. Soleimani-Amiri S. Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidi-nones/Tetrahydropyrimidinones Using Biginelli Reaction Cat-alyzed by Fe 3 O 4 @C@OSO 3 H. Polycycl. Aromat. Compd. 2022 42 4 1341 1357 10.1080/10406638.2020.1781203
    [Google Scholar]
  66. c Kassaee M.Z. Motamedi E. Majdi M. Cheshmehkani A. Soleimani-Amiri S. Buazar F. Media effects on nano-brass arc fabrications. J. Alloys Compd. 2008 453 1-2 229 232 10.1016/j.jallcom.2007.06.002
    [Google Scholar]
  67. d Soleimani-Amiri S. Hossaini Z. Arabkhazaeli M. Karami H. Afshari Sharif Abad S. Green synthesis of py-rimido‐isoquinolines and pyrimido‐quinoline using ZnO na-norods as an efficient catalyst: Study of antioxidant activity. J. Chin. Chem. Soc. (Taipei) 2019 66 4 438 445 10.1002/jccs.201800199
    [Google Scholar]
  68. e Soleimani-Amiri S. Koohi M. Azizi Z. Characterization of nonsegregated C 17 Si 3 heterofullerenic isomers using den-sity functional theory method. J. Chin. Chem. Soc. (Taipei) 2018 65 12 1453 1464 10.1002/jccs.201800163
    [Google Scholar]
  69. a Sheikholeslami-Farahani F. Shahvelayati A.S. Sol-vent-free one-pot synthesis of highly functionalized benzo-thiazolediamides via Ugi four-component reaction. Izv. Him. 2015 47 830 836
    [Google Scholar]
  70. b Azizian J. Miri R. Mohammadi M.K. Sheikholeslami Farahani F. Hosseini J. Nikpour M. Synthesis of New (Py-rimido[4,5- e][1,3,4] thiadiazin-7-yl)hydrazine Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2010 185 8 1782 1787 10.1080/10426500903299893
    [Google Scholar]
  71. c Ezzatzadeh E. Sheikholeslami-Farahani F. Yadollahza-deh K. Rezayati S. Highly efficient reusable carboxy group functionalized imidazolium salts for a simple and cost-effective preparation of pyrano[2,3-d]pyrimidinone deriva-tives. Comb. Chem. High Throughput Screen. 2021 24 9 1465 1475 10.2174/1386207323666201007154343 33030128
    [Google Scholar]
  72. d Sheikholeslami-Farahani F. Amine functionalized SiO2@ Fe3O4 as a green and reusable magnetic nanoparticles system for the synthesis of knoevenagel condensation in water. Asian J Nanosci Mater 2022 5 132 143
    [Google Scholar]
  73. a Kefayati H. Khandan S. Tavancheh S. One-pot three components synthesis of novel 2-iminoquinazolines and 2-imino spiro[indoline-quinazoline/pyrimidine]ones cata-lyzed by sodium fluoride. Russ. J. Gen. Chem. 2015 85 7 1757 1762 10.1134/S1070363215070300
    [Google Scholar]
  74. b Zardoost M.R. Khandan S. Dehbandi B. Electronic states and charge transport in a class of low dimensional structured systems. Physica E 2019 107 110 116 10.1016/j.physe.2018.11.027
    [Google Scholar]
  75. c Khandan S. Yavari I. Azizian J. A one-pot synthesis 3-alkoxycarbonyl-3,4-dihydro-2H-pyran-2-ones from vinyli-dene melderum’s acids, dialkyl acetylenedicarboxylates, and simple alcohols. Mol. Divers. 2023 27 1 125 133 10.1007/s11030‑022‑10407‑7 35267130
    [Google Scholar]
  76. d Zamani Hargalani F. Shafaei F. Khandan S. Rostami-Charati F. Green synthesis and biological activity investiga-tion of new pyrimidotriazinoazepines. Polycycl. Aromat. Compd. 2024 44 1 442 456 10.1080/10406638.2023.2174995
    [Google Scholar]
  77. a Khandan-Barani K. Motamedi-Asl A. An efficient green synthesis of some new 4H-pyrimido [2, 1, b] benzimi-azoles and 4H-pyrimido [2, 1, b] benzothiazoles promoted by guanidinium chloride. Iranian Journal of Catalysis 2015 5 339 343
    [Google Scholar]
  78. b Feizabad F.K. Khandan-Barani K. Hassanabadi A. Glutamic acid as an efficient and green catalyst for the one-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under thermal, solvent-free conditions. J. Chem. Res. 2017 41 11 673 675 10.3184/174751917X15105690662854
    [Google Scholar]
  79. c Maghsoodlou M.T. Khandan-Barani K. Hazeri N. Habibi-Khorasani S.M. Willis A.C. A novel one-pot synthe-sis of symmetric dialkyl 2,5-bis((2,6-dimethylphenyl)imino)-2,5-dihydrofuran-3,4-dicarboxylate derivatives. Res. Chem. Intermed. 2014 40 2 779 785 10.1007/s11164‑012‑1002‑2
    [Google Scholar]
  80. d Ezzatzadeh E. Soleimani-Amiri S. Hossaini Z. Khan-dan Barani, K. Synthesis and evaluation of the antioxidant ac-tivity of new spiro-1,2,4-triazine derivatives applying Ag/Fe3O4/CdO@MWCNT MNCs as efficient organometallic nanocatalysts. Front Chem. 2022 10 1001707 10.3389/fchem.2022.1001707 36262344
    [Google Scholar]
  81. a Patil A. Synthesis of gold nanoparticles using extract of vitis vinifera, buchananialanzan, juglandaceae, phoenix dactylifera plants, and evaluation of antimicrobial activity. Chem. Methodol. 2023 7 15 27
    [Google Scholar]
  82. b Dhahir Z. Turkie N. New turbidimetric method for de-termination of cefotaxime sodium in pharmaceutical drugs using continuous flow injection manifold design with cfts- vanadium oxide sulfate system. Chem. Methodol. 2022 6 91 102
    [Google Scholar]
  83. c Faehad M. Shafiq N. Arshad U. Radhi A. As antimicrobial agents: Synthesis, structural characterization and molecular docking studies of barbituric acid derivatives from phenobarbital. Chem. Methodol. 2022 2022
    [Google Scholar]
  84. d Kareem F. Hammood M. Determination of the Quantity of Losartan Active Ingredient in the Medication Formulations via Turbidimetric-Flow Injection Technique. Chem. Method-ol. 2022 6 41 51
    [Google Scholar]
  85. e Mohammad M. Synthesis, Characterization of Ethyl Di-oxoisoindolinyl Cyclohexenone Carboxylate Derivatives from Some Chalcones and its Biological Activity Assessment. Chem. Methodol 2023 7 408 418
    [Google Scholar]
  86. a Ezzatzadeh E. Pourghasem E. Sofla S.F.I. Chemical Composition and Antimicrobial Activity of the Volatile Oils from Leaf, Flower, Stem and Root of Thymus transcaucasicus from Iran. J. Essent. Oil-Bear. Plants 2014 17 4 577 583 10.1080/0972060X.2014.901616
    [Google Scholar]
  87. b Golipour H. Ezzatzadeh E. Sadeghianmaryan A. Inves-tigation of co‐electrospun gelatin: TIO 2 /polycaprolactone:silk fibroin scaffolds for wound healing applications. J. Appl. Polym. Sci. 2022 139 27 e52505 10.1002/app.52505
    [Google Scholar]
  88. c Rezayati S. Kalantari F. Ramazani A. Ezzatzadeh E. Isoquinolinium- N -sulfonic acid thiocyanate/H 2 O 2 as effi-cient reagent for thiocyanation of N -bearing (hetero)aromatic compounds. J. Sulfur Chem. 2021 42 5 575 590 10.1080/17415993.2021.1929230
    [Google Scholar]
  89. a Erdag E. Chem. Methodol 2023 7 904 915
    [Google Scholar]
  90. b Ahmed J.M. Synthesis of new 1,3-oxazole and 1,3-thiazole derivatives with expected biological activity. Chem. Methodol 2022 6 953 961
    [Google Scholar]
  91. c Zahraa Q. Synthesis, Characterization, and Antimicrobial Activity By Coordinated Metals Ions Rh+3, Au+3 with Sodium Fusidate and 2,2/Bipyridine as Ligands. Chem. Methodol. 2022 6 929 939
    [Google Scholar]
  92. d Fayyadh A.N. Synthesis and antimicrobial activity of new 4-fromyl pyrazole derivatives drived from galloyl hydrazide. Chem. Methodol. 2023 7 267 276
    [Google Scholar]
  93. e Reza T. Four-component synthesis of polyhydroquino-lines via unsymmetrical hantzsch reaction employing cu-irmof-3 as a robust heterogeneous catalyst. Chem. Methodol. 2022 6 639 648
    [Google Scholar]
  94. a Pezeshkvar T. Norouzi B. Moradian M. Mirabi A. Synthesis of nickel oxide nanostructures and its application for acyclovir antivirus drug sensing in the presence of sodi-um dodecyl sulfate. Ionics 2022 28 9 4445 4459 10.1007/s11581‑022‑04660‑x
    [Google Scholar]
  95. b Norouzi B. Moradian M. Malekan A. An efficient am-perometric sensor for hydrogen peroxide by using a carbon paste electrode modified with cobalt impregnated zeolite. Port. Electrochem. Acta 2015 33 2 111 124 10.4152/pea.201502111
    [Google Scholar]
  96. c Khanjari Z. Mirabi A. Rad A.S. Moradian M. Selec-tive removal of cadmium ions from water samples by using Br-PADAP functionalized SBA-15 particles. Desalination Water Treat. 2018 130 172 181 10.5004/dwt.2018.22971
    [Google Scholar]
  97. d Moradian M. Tunable band gap by chemical functionali-zation of the Sr2S monolayer from first-principles calcula-tions. Inorg. Chem. Commun. 2023 150 110529 10.1016/j.inoche.2023.110529
    [Google Scholar]
  98. a Ghashghaee M. Ghambarian M. Azizi Z. Character-ization of extraframework Zn2+ cationic sites in silicalite-2: a computational study. Struct. Chem. 2020 27 467
    [Google Scholar]
  99. b Ghadiri M. Mn-Doped black phosphorene for ultrasensi-tive hydrogen sulfide detection: periodic DFT calculations. Phys. Chem. Chemical Physics 2020 22 15549
    [Google Scholar]
  100. c Ghambarian M. Black phosphorus: synthesis, properties and applications. Inorg. Chem. Commun. 2020 2020 30
    [Google Scholar]
  101. d Ghashghaee M. Highly improved carbon dioxide sensi-tivity and selectivity of black phosphorene sensor by vacancy doping: A quantum chemical perspective. Int. J. Quantum Chem. 2020 120 e26265
    [Google Scholar]
  102. a Hajiaghababaei L. Shahvelayati A.S. Aghili S.A. Rapid determination of cadmium: a potentiometric membrane sensor based on ninhydrin-pyrogallol monoadduct as a new ionophore. Anal. Bioanal. Electrochem 2015 7 91 104
    [Google Scholar]
  103. b Khazaie F. High-Flux sodium alginate sulfate draw solu-tion for water recovery from saline waters and wastewaters via forward osmosis. Chem. Engine J. 2021 417 129250
    [Google Scholar]
  104. c Muna A.J.T. An Efficient Cloud Point Extraction for Doxycycline Pre-concentration in Pharmaceutical Samples prior to UV-Vis Spectrophotometric Analysis. Chem. Meth-odol 2022 6 649 660
    [Google Scholar]
  105. d Wasan A.A.U. An Efficient Cloud Point Extraction for Doxycycline Pre-concentration in Pharmaceutical Samples prior to UV-Vis Spectrophotometric Analysis. Chem. Meth-odol. 2023 7 499 508
    [Google Scholar]
  106. a Naderi S. Sandaroos R. Peiman S. Maleki B. Syn-thesis and Characterization of a Novel Crowned Schiff Base Ligand Linked to Ionic Liquid and Application of Its Mn(III) Complex in the Epoxidation of Olefins. Chem. Methodol 2023 7 392 404
    [Google Scholar]
  107. b Taghreed Q. Formation, formation, characterization and antioxidant study of mixed ligand complexes derived from succinyl chloride. Chem. Methodol 2022 6 914 928
    [Google Scholar]
  108. a Shirzadi P. Masomi M. Nazemi A. Fuel Cell Simu-lation Using Aspen Plus Simulation Software. Chem. Method-ol. 2022 6 197 211
    [Google Scholar]
  109. b Yavari I. Hossaini Z. Karimi E. A synthesis of dialkyl phosphorylsuccinates from the reaction of NH-acids with di-alkyl acetylenedicarboxylates in the presence of trialkyl (aryl) phosphites. Monatsh. Chem. 2007 138 12 1267 1271 10.1007/s00706‑007‑0711‑5
    [Google Scholar]
  110. c Katal R. Masudy-Panah S. Sabbaghan M. Hossaini Z. Davood Abadi Farahani M.H. Photocatalytic degradation of triclosan by oxygen defected CuO thin film. Separ. Purif. Tech. 2020 250 117239 10.1016/j.seppur.2020.117239
    [Google Scholar]
  111. d Azizi B. Poor Heravi M.R. Hossaini Z. Ebadi A. Vessally E. Intermolecular difunctionalization of alkenes: synthesis of β-hydroxy sulfides. RSC Advances 2021 11 22 13138 13151 10.1039/D0RA09848E 35423843
    [Google Scholar]
  112. Yang L. Zhang Z. Zhang C.N. Wang X.L. A bifunctional POM-based Cu-viologen complex with mixed octamolybdate clusters for rapid oxidation desulfurization and effective pho-togeneration of hydrogen. Rare Met. 2024 43 1 236 246 10.1007/s12598‑023‑02435‑5
    [Google Scholar]
  113. Darabdhara G. Das M.R. Dual responsive magnetic Au@Ni nanostructures loaded reduced graphene oxide sheets for col-orimetric detection and photocatalytic degradation of toxic phenolic compounds. J. Hazard. Mater. 2019 368 365 377 10.1016/j.jhazmat.2019.01.010 30690389
    [Google Scholar]
  114. Chen X. Guo R. Pan W. Yuan Y. Hu X. Bi Z. Wang J. A novel double S-scheme photocatalyst Bi7O9I3/Cd0.5Zn0.5S QDs/WO3−x with efficient full-spectrum-induced phenol photodegradation. Appl. Catal. B 2022 318 121839 10.1016/j.apcatb.2022.121839
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073298128240918110357
Loading
/content/journals/cchts/10.2174/0113862073298128240918110357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test