Skip to content
2000
image of Bingqing Gao Facilitates the Healing Process of Full-Thickness Skin Defects in Rat Wounds by Activating the PI3K/AKT Pathway

Abstract

Background

Trauma, resulting from mechanical factors, entails damage to human tissues or organs. Whether occurring during times of war or peace, trauma is prevalent, particularly skin defects arising from surgery or external injuries. The development and design of effective wound dressings have become paramount. Bingqing Gao(BQG), rooted in Chinese folk medicine, is employed explicitly in trauma treatment based on traditional Chinese medicine (TCM) theory. This study aims to elucidate how BQG facilitates full-thickness skin wound healing in Sprague Dawley (SD) rats.

Methods

Data collection commenced using two approaches: retrieval from TCM system pharmacology databases (TCMSP) and literature mining to compile the practical chemical components and targets of BQG. A drug-target network was constructed. Subsequently, disease targets related to wound healing were collected to select core targets and pathways, building a drug-disease target protein-protein interaction (PPI) network using the ClusterONE algorithm to identify core genes. Gene Ontology (GO) and KEGG enrichment analyses were conducted based on the Metascape database. Finally, molecular docking validation was performed on the screened core targets and core components. In terms of experimentation, an SD rat full-thickness skin defect model was established, and varying doses of BQG were applied. Healing area, HE staining, Masson staining, ELISA, PCR, and other methods were employed to validate cytokines, differential proteins, and pathways. The study collectively discusses the mechanism and targets by which BQG promotes full-thickness skin wound healing in SD rats.

Results

Through network pharmacology screening, we identified various active components, including resveratrol, Lithospermic acid B, sanguiinH-2, asernestioside A_qt, kaempferol, daidzein, quercetin, apigenin, and Medicarpin. The core targets encompass Interleukin-6 (IL-6), Protein Kinase B (AKT1), Vascular Endothelial Growth Factor A (VEGFA), Interleukin-1 beta (IL-1β), Tumor Protein 53 (TP53), Epidermal Growth Factor Receptor (EGFR), Tumor Necrosis Factor (TNF), Albumin (ALB), among others. Potential signaling pathways include Phosphoinositide 3-kinase (PI3K)/AKT, Tumor Necrosis Factor (TNF), Hypoxia-Inducible Factor-1 (HIF-1), and more. Molecular docking studies suggest a robust binding interaction between the active components of BQG and disease targets, indicating a potential regulation of cytokines through the PI3K/AKTsignaling pathway, thereby promoting wound healing. The results of the experiment revealed that, in comparison to the model group, both the rhb-FGF group and BQG-H group exhibit a noteworthy increase in the expression levels of PI3K and AKT genes. Concurrently, there is a significant decrease in the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Additionally, there is a substantial increase in the levels of Transforming Growth Factor-beta (TGF-β) and Vascular Endothelial Growth Factor (VEGF).

Conclusion

Network pharmacology results indicate that BQG promotes wound healing through multiple components, targets, and pathways. experimental results suggest that BQG may activate the PI3K/AKTsignaling pathway, inhibit the production and release of related pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, promote VEGF generation at the injury site, and enhance TGF-β signaling transduction, effectively regulates the inflammatory response at the site of injury, promotes vascular regeneration in the injury area, and induces the proliferation and migration of cells in the injury area, ultimately contributing to wound healing. This study establishes the foundation for a more profound understanding of the molecular mechanisms underlying BQG's promotion of wound healing and offers insights for future drug research on BQG.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073311259240918081737
2025-02-04
2025-03-28
Loading full text...

Full text loading...

References

  1. Hodge J.G. Zamierowski D.S. Robinson J.L. Mellott A.J. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater. Res. 2022 26 1 50 10.1186/s40824‑022‑00291‑5 36183134
    [Google Scholar]
  2. Bortolotti P. Faure E. Kipnis E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front. Immunol. 2018 9 1900 10.3389/fimmu.2018.01900 30166988
    [Google Scholar]
  3. Choi J. Carlos G. Nassar A.K. Knowlton L.M. Spain D.A. The impact of trauma systems on patient outcomes. Curr. Probl. Surg. 2021 58 1 100849 10.1016/j.cpsurg.2020.100849 33431134
    [Google Scholar]
  4. Jeschke M.G. van Baar M.E. Choudhry M.A. Chung K.K. Gibran N.S. Logsetty S. Burn injury. Nat. Rev. Dis. Primers 2020 6 1 11 10.1038/s41572‑020‑0145‑5 32054846
    [Google Scholar]
  5. Sen C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care (New Rochelle) 2019 8 2 39 48 10.1089/wound.2019.0946 30809421
    [Google Scholar]
  6. Zhang D. Mei L. Hao Y. Yi B. Hu J. Wang D. Zhao Y. Wang Z. Huang H. Xu Y. Deng X. Li C. Li X. Zhou Q. Lu Y. A hydrogel-based first-aid tissue adhesive with effective hemostasis and anti-bacteria for trauma emergency management. Biomater. Res. 2023 27 1 56 10.1186/s40824‑023‑00392‑9 37269017
    [Google Scholar]
  7. Sierra-Sánchez Á. Kim K.H. Blasco-Morente G. Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen. Med. 2021 6 1 35 10.1038/s41536‑021‑00144‑0 34140525
    [Google Scholar]
  8. Kaur A. Midha S. Giri S. Mohanty S. Functional Skin Grafts: Where Biomaterials Meet Stem Cells. Stem Cells Int. 2019 2019 1 20 10.1155/2019/1286054 31354835
    [Google Scholar]
  9. Ríos-Galacho M. Martínez-Moreno D. López-Ruiz E. Gálvez-Martín P. Marchal J.A. An Overview on the Manufacturing of Functional and Mature Cellular Skin Substitutes. Tissue Eng. Part B Rev. 2022 28 5 1035 1052 10.1089/ten.teb.2021.0131 34652978
    [Google Scholar]
  10. Falanga V. Isseroff R.R. Soulika A.M. Romanelli M. Margolis D. Kapp S. Granick M. Harding K. Chronic wounds. Nat. Rev. Dis. Primers 2022 8 1 50 10.1038/s41572‑022‑00377‑3 35864102
    [Google Scholar]
  11. Xu Z. Han S. Gu Z. Wu J. Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Adv. Healthc. Mater. 2020 9 5 1901502 10.1002/adhm.201901502 31977162
    [Google Scholar]
  12. Oliveira A. Simões S. Ascenso A. Reis C.P. Therapeutic advances in wound healing. J. Dermatolog. Treat. 2022 33 1 2 22 10.1080/09546634.2020.1730296 32056472
    [Google Scholar]
  13. Chocarro-Wrona C. López-Ruiz E. Perán M. Gálvez-Martín P. Marchal J.A. Therapeutic strategies for skin regeneration based on biomedical substitutes. J. Eur. Acad. Dermatol. Venereol. 2019 33 3 484 496 10.1111/jdv.15391 30520159
    [Google Scholar]
  14. Zhang S.H. Zhang S.G. Zhou P. Wei X. Mao X.D. Lin S.G. Liu C. LncRNA MALAT1 affects high glucose-induced endothelial cell proliferation, apoptosis, migration and angiogenesis by regulating the PI3K/Akt signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019 23 19 8551 8559 31646587
    [Google Scholar]
  15. Hoxhaj G. Manning B.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020 20 2 74 88 10.1038/s41568‑019‑0216‑7 31686003
    [Google Scholar]
  16. He Y. Sun M.M. Zhang G.G. Yang J. Chen K.S. Xu W.W. Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 425 10.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  17. Ghafouri-Fard S. Khanbabapour Sasi A. Hussen B.M. Shoorei H. Siddiq A. Taheri M. Ayatollahi S.A. Interplay between PI3K/AKT pathway and heart disorders. Mol. Biol. Rep. 2022 49 10 9767 9781 10.1007/s11033‑022‑07468‑0 35499687
    [Google Scholar]
  18. Long H.Z. Cheng Y. Zhou Z.W. Luo H.Y. Wen D.D. Gao L.C. PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer’s Disease and Parkinson’s Disease. Front. Pharmacol. 2021 12 648636 10.3389/fphar.2021.648636 33935751
    [Google Scholar]
  19. Ramasubbu K. Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol. Cell. Biochem. 2023 478 6 1307 1324 10.1007/s11010‑022‑04587‑x 36308670
    [Google Scholar]
  20. Mayer I.A. Arteaga C.L. The PI3K/AKT Pathway as a Target for Cancer Treatment. Annu. Rev. Med. 2016 67 1 11 28 10.1146/annurev‑med‑062913‑051343 26473415
    [Google Scholar]
  21. Noorolyai S. Shajari N. Baghbani E. Sadreddini S. Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene 2019 698 120 128 10.1016/j.gene.2019.02.076 30849534
    [Google Scholar]
  22. Mollica V. Marchetti A. Rosellini M. Nuvola G. Rizzo A. Santoni M. Cimadamore A. Montironi R. Massari F. An Insight on Novel Molecular Pathways in Metastatic Prostate Cancer: A Focus on DDR, MSI and AKT. Int. J. Mol. Sci. 2021 22 24 13519 10.3390/ijms222413519 34948314
    [Google Scholar]
  23. Madanes D. Bilotas M.A. Bastón J.I. Singla J.J. Meresman G.F. Barañao R.I. Ricci A.G. PI3K/AKT pathway is altered in the endometriosis patient’s endometrium and presents differences according to severity stage. Gynecol. Endocrinol. 2020 36 5 436 440 10.1080/09513590.2019.1680627 31637941
    [Google Scholar]
  24. Huang X. Liu G. Guo J. Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018 14 11 1483 1496 10.7150/ijbs.27173 30263000
    [Google Scholar]
  25. Wang X. Wang Z.Y. Zheng J.H. Li S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021 19 1 1 11 10.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  26. Oulas A. Minadakis G. Zachariou M. Sokratous K. Bourdakou M.M. Spyrou G.M. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief. Bioinform. 2019 20 3 806 824 10.1093/bib/bbx151 29186305
    [Google Scholar]
  27. Tao M. Ao T. Mao X. Yan X. Javed R. Hou W. Wang Y. Sun C. Lin S. Yu T. Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact. Mater. 2021 6 9 2927 2945 10.1016/j.bioactmat.2021.02.010 33732964
    [Google Scholar]
  28. Hassanshahi A. Moradzad M. Ghalamkari S. Fadaei M. Cowin A.J. Hassanshahi M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022 11 19 2953 10.3390/cells11192953 36230913
    [Google Scholar]
  29. An Y. Lin S. Tan X. Zhu S. Nie F. Zhen Y. Gu L. Zhang C. Wang B. Wei W. Li D. Wu J. Exosomes from adipose‐derived stem cells and application to skin wound healing. Cell Prolif. 2021 54 3 e12993 10.1111/cpr.12993 33458899
    [Google Scholar]
  30. Hsu Y.C. Fuchs E. Building and Maintaining the Skin. Cold Spring Harb. Perspect. Biol. 2022 14 7 a040840 10.1101/cshperspect.a040840 34607830
    [Google Scholar]
  31. Farooq M. Khan A.W. Kim M.S. Choi S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021 10 11 3242 10.3390/cells10113242 34831463
    [Google Scholar]
  32. Zulkefli N. Che Zahari C.N.M. Sayuti N.H. Kamarudin A.A. Saad N. Hamezah H.S. Bunawan H. Baharum S.N. Mediani A. Ahmed Q.U. Ismail A.F.H. Sarian M.N. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int. J. Mol. Sci. 2023 24 5 4607 10.3390/ijms24054607 36902038
    [Google Scholar]
  33. Rayman G. Vas P. Dhatariya K. Driver V. Hartemann A. Londahl M. Piaggesi A. Apelqvist J. Attinger C. Game F. Guidelines on use of interventions to enhance healing of chronic foot ulcers in diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020 36 S1 Suppl. 1 e3283 10.1002/dmrr.3283 32176450
    [Google Scholar]
  34. Tu Z. Zhong Y. Hu H. Shao D. Haag R. Schirner M. Lee J. Sullenger B. Leong K.W. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 2022 7 7 557 574 10.1038/s41578‑022‑00426‑z 35251702
    [Google Scholar]
  35. Tu C. Lu H. Zhou T. Zhang W. Deng L. Cao W. Yang Z. Wang Z. Wu X. Ding J. Xu F. Gao C. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 2022 286 121597 10.1016/j.biomaterials.2022.121597 35688112
    [Google Scholar]
  36. Won J.E. Lee Y.S. Park J.H. Lee J.H. Shin Y.S. Kim C.H. Knowles J.C. Kim H.W. Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Biomaterials 2020 227 119548 10.1016/j.biomaterials.2019.119548 31670033
    [Google Scholar]
  37. Liu W. Wang M. Cheng W. Niu W. Chen M. Luo M. Xie C. Leng T. Zhang L. Lei B. Bioactive antiinflammatory antibacterial hemostatic citrate-based dressing with macrophage polarization regulation for accelerating wound healing and hair follicle neogenesis. Bioact. Mater. 2021 6 3 721 728 10.1016/j.bioactmat.2020.09.008 33005834
    [Google Scholar]
  38. Rodrigues M. Kosaric N. Bonham C.A. Gurtner G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019 99 1 665 706 10.1152/physrev.00067.2017 30475656
    [Google Scholar]
  39. Wan R. Weissman J.P. Grundman K. Lang L. Grybowski D.J. Galiano R.D. Diabetic wound healing: The impact of diabetes on myofibroblast activity and its potential therapeutic treatments. Wound Repair Regen. 2021 29 4 573 581 10.1111/wrr.12954 34157786
    [Google Scholar]
  40. Hong Y.K. Chang Y.H. Lin Y.C. Chen B. Guevara B.E.K. Hsu C.K. Inflammation in Wound Healing and Pathological Scarring. Adv. Wound Care (New Rochelle) 2023 12 5 288 300 10.1089/wound.2021.0161 36541356
    [Google Scholar]
  41. Liu B. Lin J. Bai L. Zhou Y. Lu R. Zhang P. Chen D. Li H. Song J. Liu X. Wu Y. Wu J. Liang C. Zhou J. Paeoniflorin Inhibits Mesangial Cell Proliferation and Inflammatory Response in Rats With Mesangial Proliferative Glomerulonephritis Through PI3K/AKT/GSK-3β Pathway. Front. Pharmacol. 2019 10 978 10.3389/fphar.2019.00978 31551783
    [Google Scholar]
  42. Wang J. Wu H. Peng Y. Zhao Y. Qin Y. Zhang Y. Xiao Z. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J. Nanobiotechnology 2021 19 1 202 10.1186/s12951‑021‑00942‑0 34233694
    [Google Scholar]
  43. Wei P. Zhong C. Yang X. Shu F. Xiao S. Gong T. Luo P. Li L. Chen Z. Zheng Y. Xia Z. Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function. Burns Trauma 2020 8 tkaa020 10.1093/burnst/tkaa020 32923490
    [Google Scholar]
  44. He X. Li Y. Deng B. Lin A. Zhang G. Ma M. Wang Y. Yang Y. Kang X. The PI3K / AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif. 2022 55 9 e13275 10.1111/cpr.13275 35754255
    [Google Scholar]
  45. Roy T. Boateng S.T. Uddin M.B. Banang-Mbeumi S. Yadav R.K. Bock C.R. Folahan J.T. Siwe-Noundou X. Walker A.L. King J.A. Buerger C. Huang S. Chamcheu J.C. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023 12 12 1671 10.3390/cells12121671 37371141
    [Google Scholar]
  46. Acosta-Martinez M. Cabail M.Z. The PI3K/Akt Pathway in Meta-Inflammation. Int. J. Mol. Sci. 2022 23 23 15330 10.3390/ijms232315330 36499659
    [Google Scholar]
  47. Apolinário P.P. Zanchetta F.C. Breder J.S.C. Adams G. Consonni S.R. Gillis R. Saad M.J.A. Lima M.H.M. Anti-inflammatory, procollagen, and wound repair properties of topical insulin gel. Braz. J. Med. Biol. Res. 2023 56 e12640 10.1590/1414‑431x2023e12640 37194835
    [Google Scholar]
  48. Meng W.S. Sun J. Lu Y. Cao T.T. Chi M.Y. Gong Z.P. Li Y.T. Zheng L. Liu T. Huang Y. Biancaea decapetala (Roth) O.Deg. extract exerts an anti-inflammatory effect by regulating the TNF/Akt/NF-κB pathway. Phytomedicine 2023 119 154983 10.1016/j.phymed.2023.154983 37586161
    [Google Scholar]
  49. Zhou Y. Cui C. Ma X. Luo W. Zheng S.G. Qiu W. Nuclear Factor κB (NF-κB)–Mediated Inflammation in Multiple Sclerosis. Front. Immunol. 2020 11 391 10.3389/fimmu.2020.00391 32265906
    [Google Scholar]
  50. Čoma M. Fröhlichová L. Urban L. Zajíček R. Urban T. Szabo P. Novák Š. Fetissov V. Dvořánková B. Smetana K. Jr Gál P. Molecular Changes Underlying Hypertrophic Scarring Following Burns Involve Specific Deregulations at All Wound Healing Stages (Inflammation, Proliferation and Maturation). Int. J. Mol. Sci. 2021 22 2 897 10.3390/ijms22020897 33477421
    [Google Scholar]
  51. Baron J.M. Glatz M. Proksch E. Optimal Support of Wound Healing: New Insights. Dermatology 2020 236 6 593 600 10.1159/000505291 31955162
    [Google Scholar]
  52. Yang F. Bai X. Dai X. Li Y. The biological processes during wound healing. Regen. Med. 2021 16 4 373 390 10.2217/rme‑2020‑0066 33787319
    [Google Scholar]
  53. Raziyeva K. Kim Y. Zharkinbekov Z. Kassymbek K. Jimi S. Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021 11 5 700 10.3390/biom11050700 34066746
    [Google Scholar]
  54. Han C. Barakat M. DiPietro L.A. Angiogenesis in Wound Repair: Too Much of a Good Thing? Cold Spring Harb. Perspect. Biol. 2022 14 10 a041225 10.1101/cshperspect.a041225 35667793
    [Google Scholar]
  55. Belvedere R. Novizio N. Morello S. Petrella A. The combination of mesoglycan and VEGF promotes skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk. Sci. Rep. 2022 12 1 11041 10.1038/s41598‑022‑15227‑1 35773320
    [Google Scholar]
  56. Elbialy Z.I. Assar D.H. Abdelnaby A. Asa S.A. Abdelhiee E.Y. Ibrahim S.S. Abdel-Daim M.M. Almeer R. Atiba A. RETRACTED: Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed. Pharmacother. 2021 137 111349 10.1016/j.biopha.2021.111349 33567349
    [Google Scholar]
  57. Xiaojie W. Banda J. Qi H. Chang A.K. Bwalya C. Chao L. Li X. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev. 2022 66 26 37 10.1016/j.cytogfr.2022.03.001 35690568
    [Google Scholar]
  58. Lin Y. Jiang Y. Xian H. Cai X. Wang T. Expression and correlation of the Pi3k/Akt pathway and VEGF in oral submucous fibrosis. Cell Prolif. 2023 56 11 e13491 10.1111/cpr.13491 37157945
    [Google Scholar]
  59. Hao M. Peng X. Sun S. Ding C. Liu W. Chitosan/Sodium Alginate/Velvet Antler Blood Peptides Hydrogel Promoted Wound Healing by Regulating PI3K/AKT/mTOR and SIRT1/NF-κB Pathways. Front. Pharmacol. 2022 13 913408 10.3389/fphar.2022.913408 35784748
    [Google Scholar]
  60. Chen J. Jiang Z. Liu X. Wang K. Fan W. Chen T. Li Z. Lin D. Berberine promotes the viability of random skin flaps via the PI3K/Akt/eNOS signaling pathway. Phytother. Res. 2023 37 2 424 437 10.1002/ptr.7621 36116786
    [Google Scholar]
  61. Gonçalves R.C. Banfi A. Oliveira M.B. Mano J.F. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2021 269 120628 10.1016/j.biomaterials.2020.120628 33412374
    [Google Scholar]
  62. Liarte S. Bernabé-García Á. Nicolás F.J. Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020 9 2 306 10.3390/cells9020306 32012802
    [Google Scholar]
  63. Katsuno Y. Derynck R. Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev. Cell 2021 56 6 726 746 10.1016/j.devcel.2021.02.028 33756119
    [Google Scholar]
  64. Marconi G.D. Fonticoli L. Rajan T.S. Pierdomenico S.D. Trubiani O. Pizzicannella J. Diomede F. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in Wound Healing, Tissue Regeneration and Organ Fibrosis. Cells 2021 10 7 1587 10.3390/cells10071587 34201858
    [Google Scholar]
  65. Massagué J. Sheppard D. TGF-β signaling in health and disease. Cell 2023 186 19 4007 4037 10.1016/j.cell.2023.07.036 37714133
    [Google Scholar]
  66. Zhang Z. Zhang X. Zhao D. Liu B. Wang B. Yu W. Li J. Yu X. Cao F. Zheng G. Zhang Y. Liu Y. TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol. Med. Rep. 2019 19 5 3505 3518 10.3892/mmr.2019.10051 30896852
    [Google Scholar]
  67. Zong J. Jiang J. Shi P. Liu J. Wang W. Li B. Zhao T. Pan T. Zhang Z. Bi L. Diao Y. Wang S. Fatty acid extracts facilitate cutaneous wound healing through activating AKT, ERK, and TGF-β/Smad3 signaling and promoting angiogenesis. Am. J. Transl. Res. 2020 12 2 478 492 32194897
    [Google Scholar]
  68. Meng T. Xiao D. Muhammed A. Deng J. Chen L. He J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021 26 1 229 10.3390/molecules26010229 33466247
    [Google Scholar]
  69. Liu H. Ma S. Xia H. Lou H. Zhu F. Sun L. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. J. Ethnopharmacol. 2018 222 201 207 10.1016/j.jep.2018.05.008 29751125
    [Google Scholar]
  70. Park C.H. Min S.Y. Yu H.W. Kim K. Kim S. Lee H.J. Kim J.H. Park Y.J. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int. J. Mol. Sci. 2020 21 13 4620 10.3390/ijms21134620 32610574
    [Google Scholar]
  71. Grujić-Milanović J. Jaćević V. Miloradović Z. Jovović D. Milosavljević I. Milanović S.D. Mihailović-Stanojević N. Resveratrol Protects Cardiac Tissue in Experimental Malignant Hypertension Due to Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Properties. Int. J. Mol. Sci. 2021 22 9 5006 10.3390/ijms22095006 34066865
    [Google Scholar]
  72. Salehi B. Venditti A. Sharifi-Rad M. Kręgiel D. Sharifi-Rad J. Durazzo A. Lucarini M. Santini A. Souto E.B. Novellino E. Antolak H. Azzini E. Setzer W.N. Martins N. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019 20 6 1305 10.3390/ijms20061305 30875872
    [Google Scholar]
  73. Youjun D. Huang Y. Lai Y. Ma Z. Wang X. Chen B. Ding X. Tan Q. Mechanisms of resveratrol against diabetic wound by network pharmacology and experimental validation. Ann. Med. 2023 55 2 2280811 10.1080/07853890.2023.2280811 37967241
    [Google Scholar]
  74. Pignet A.L. Schellnegger M. Hecker A. Kohlhauser M. Kotzbeck P. Kamolz L.P. Resveratrol-Induced Signal Transduction in Wound Healing. Int. J. Mol. Sci. 2021 22 23 12614 10.3390/ijms222312614 34884419
    [Google Scholar]
  75. Hu W.H. Dai D.K. Zheng B.Z.Y. Duan R. Chan G.K.L. Dong T.T.X. Qin Q.W. Tsim K.W.K. The binding of kaempferol-3-O-rutinoside to vascular endothelial growth factor potentiates anti-inflammatory efficiencies in lipopolysaccharide-treated mouse macrophage RAW264.7 cells. Phytomedicine 2021 80 153400 10.1016/j.phymed.2020.153400 33157413
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073311259240918081737
Loading
/content/journals/cchts/10.2174/0113862073311259240918081737
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test