Skip to content
2000
Volume 28, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Dysmenorrhea is one of the most common ailments affecting young and middle-aged women, significantly impacting their quality of life. Traditional Chinese Medicine (TCM) offers unique advantages in treating dysmenorrhea. However, an accurate diagnosis is essential to ensure correct treatment. This research integrates the age-old wisdom of TCM with modern Machine Learning (ML) techniques to enhance the precision and efficiency of dysmenorrhea syndrome differentiation, a pivotal process in TCM diagnostics and treatment planning.

Methods

A total of 853 effective cases of dysmenorrhea were retrieved from the CNKI database, including patients’ syndrome types, symptoms, and features, to establish the TCM information database of dysmenorrhea. Subsequently, 42 critical features were isolated from a potential set of 86 using a selection procedure augmented by Python's Scikit-Learn Library. Various machine learning models were employed, including Logistic Regression, Random Forest Classifier, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Artificial Neural Networks (ANN), each chosen for their potential to unearth complex patterns within the data.

Results

Based on accuracy, precision, recall, and F1-score metrics, SVM emerged as the most effective model, showcasing an impressive precision of 98.29% and an accuracy of 98.24%. This model's analytical prowess not only highlighted the critical features pivotal to the syndrome differentiation process but also stands to significantly aid clinicians in formulating personalized treatment strategies by pinpointing nuanced symptoms with high precision.

Conclusion

The study paves the way for a synergistic approach in TCM diagnostics, merging ancient wisdom with computational acuity, potentially innovating the diagnosis and treatment mode of TCM. Despite the promising outcomes, further research is needed to validate these models in real-world settings and extend this approach to other diseases addressed by TCM.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073293191240212091028
2024-02-13
2025-03-29
Loading full text...

Full text loading...

References

  1. ProctorM. FarquharC. Diagnosis and management of dysmenorrhoea.BMJ200633275501134113810.1136/bmj.332.7550.1134 16690671
    [Google Scholar]
  2. IacovidesS. AvidonI. BakerF.C. What we know about primary dysmenorrhea today: a critical review.Hum. Reprod. Update201521676277810.1093/humupd/dmv039 26346058
    [Google Scholar]
  3. XieX. KongB. DuanT. Obstetrics and Gynecology.9th edPeople's Medical Publishing House2018351352
    [Google Scholar]
  4. ArmourM. ParryK. ManoharN. HolmesK. FerfoljaT. CurryC. MacMillanF. SmithC.A. The prevalence and academic impact of dysmenorrhea in 21,573 young women: A systematic review and meta-analysis.J. Womens Health20192881161117110.1089/jwh.2018.7615 31170024
    [Google Scholar]
  5. MacGregorB. AllaireC. BedaiwyM.A. YongP.J. BougieO. Disease burden of dysmenorrhea: Impact on life course potential.Int. J. Womens Health20231549950910.2147/IJWH.S380006 37033122
    [Google Scholar]
  6. DongJ. The relationship between traditional chinese medicine and modern medicine.Evid. Based Complement. Alternat. Med.2013201311010.1155/2013/153148 23983772
    [Google Scholar]
  7. TianyuC. TingliN. XinN. YingchuS. XuezhiY. LiangxiaoM. Application of traditional chinese medicine four-diagnostic auxiliary apparatus in evaluation of health status and clinical treatment.J. Tradit. Chin. Med.201838344745110.1016/S0254‑6272(18)30637‑X 32185979
    [Google Scholar]
  8. XuJ. LouZ. DengZ. LiY. YangL. HuangJ. Connotation analysis and system construction of TCM theory of therapy.Zhonghua Zhongyiyao Zazhi2023386366
    [Google Scholar]
  9. JiangM. LuC. ZhangC. YangJ. TanY. LuA. ChanK. Syndrome differentiation in modern research of traditional Chinese medicine.J. Ethnopharmacol.2012140363464210.1016/j.jep.2012.01.033 22322251
    [Google Scholar]
  10. XiaS. YangZ. ZhouC. XinJ. ZhangJ. DuG. Review of application of machine learning methods in the field of diagnostics of Traditional Chinese Medicine.J. Guangz. Uni. Chin. Med.20213882683110.13359/j.cnki.gzxbtcm.2021.04.032
    [Google Scholar]
  11. ChengF. WangX. SongW. LuY. LiX. ZhangH. WangQ. Biologic basis of TCM syndromes and the standardization of syndrome classification.J Trad. Chin. Med. Sci.201412929710.1016/j.jtcms.2014.09.005
    [Google Scholar]
  12. ZhangY. Traditional Chinese Gynecology.China Press of Traditional Chinese Medicine2007133135
    [Google Scholar]
  13. National Administration of Traditional Chinese Medicine Efficacy criteria for disease syndrome diagnosis of Traditional Chinese Medicine.China Medical Science and Technology Press2012234
    [Google Scholar]
  14. BreimanL. Classification and Regression Trees.1st edNew YorkRoutledge201724525010.1201/9781315139470
    [Google Scholar]
  15. PedregosaF. VaroquauxG. GramfortA. MichelV. ThirionB. GriselO. BlondelM. PrettenhoferP. WeissR. DubourgV. Scikit-learn: Machine learning in python.JMLR20111228252830
    [Google Scholar]
  16. ChenR.C. ManonggaW.E. DewiC. Recursive feature elimination for improving learning points on hand-sign recognition.Future Internet2022141235210.3390/fi14120352
    [Google Scholar]
  17. GewersF.L. FerreiraG.R. ArrudaH.F.D. SilvaF.N. CominC.H. AmancioD.R. CostaL.D.F. Principal component analysis.ACM Comput. Surv.202254413410.1145/3447755
    [Google Scholar]
  18. LouppeG. Understanding random forests: From theory to practice.arXiv:1407.75022014
  19. JamesG. WittenD. HastieT. TibshiraniR. An Introduction to Statistical Learning.Springer201311210.1007/978‑1‑4614‑7138‑7
    [Google Scholar]
  20. HicksS.A. StrümkeI. ThambawitaV. HammouM. RieglerM.A. HalvorsenP. ParasaS. On evaluation metrics for medical applications of artificial intelligence.Sci. Rep.2022121597910.1038/s41598‑022‑09954‑8 35395867
    [Google Scholar]
  21. McKinneyW. Data structures for statistical computing in python.Proceedings of the 9th Python in Science ConferenceAustin, TX2010515610.25080/Majora‑92bf1922‑00a
    [Google Scholar]
  22. AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. CorradoG.S. DavisA. DeanJ. DevinM. Tensorflow: Large-scale machine learning on heterogeneous distributed systems.arXiv:1603.044672016
  23. ChenH. HeY. Machine learning approaches in traditional chinese medicine: A systematic review.Am. J. Chin. Med.20225019113110.1142/S0192415X22500045 34931589
    [Google Scholar]
  24. LoefB. WongA. JanssenN.A.H. StrakM. HoekstraJ. PicavetH.S.J. BoshuizenH.C.H. VerschurenW.M.M. HerberG.C.M. Using random forest to identify longitudinal predictors of health in a 30-year cohort study.Sci. Rep.20221211037210.1038/s41598‑022‑14632‑w 35725920
    [Google Scholar]
  25. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  26. LiawA. WienerM. Classification and regression by RandomForest.R News200221822
    [Google Scholar]
  27. CortesC. VapnikV. Support-vector networks.Mach. Learn.199520327329710.1007/BF00994018
    [Google Scholar]
  28. HsuC-W. ChangC-C. LinC-J. A Practical Guide to Support Vector Classification.2003Available from: http://www.csie.ntu.edu.tw/~cjlin
  29. ZhaoC. LiG.Z. WangC. NiuJ. Advances in patient classification for traditional chinese medicine: A machine learning perspective.Evid. Based Complement. Alternat. Med.2015201511810.1155/2015/376716 26246834
    [Google Scholar]
  30. CoverT. HartP. Nearest neighbor pattern classification.IEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.1053964
    [Google Scholar]
  31. GoodfellowI. BengioY. CourvilleA. Deep Learning.MIT press2016
    [Google Scholar]
  32. TangA.C.Y. ChungJ.W.Y. WongT.K.S. Digitalizing traditional chinese medicine pulse diagnosis with artificial neural network.Telemed. J. E Health201218644645310.1089/tmj.2011.0204
    [Google Scholar]
  33. ParkD.J. ParkM.W. LeeH. KimY.J. KimY. ParkY.H. Development of machine learning model for diagnostic disease prediction based on laboratory tests.Sci. Rep.2021111756710.1038/s41598‑021‑87171‑5 33828178
    [Google Scholar]
  34. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.Proceedings of the IEEE conference on computer vision and pattern recognition2016770778
    [Google Scholar]
  35. KingmaD.P. BaJ. Adam: A Method for Stochastic Optimization.arXiv:1412.69802014
  36. AwadM. KhannaR. AwadM. KhannaR. Support vector machines for classification.In: Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers.Springer2015396610.1007/978‑1‑4302‑5990‑9_3
    [Google Scholar]
  37. XiaC. DengF. WangY. XuZ. LiuG. XuJ. GewissH. Classification research on syndromes of TCM based on SVM.2009 2nd International Conference on Biomedical Engineering and Informatics 17-19 October 2009, Tianjin, China200910.1109/BMEI.2009.5305418
    [Google Scholar]
  38. ChenY. MaoQ. WangB. DuanP. ZhangB. HongZ. Privacy-preserving multi-class support vector machine model on medical diagnosis.IEEE J. Biomed. Health Inform.20222673342335310.1109/JBHI.2022.3157592 35259122
    [Google Scholar]
  39. AbdelfattahS. BazaM. MahmoudM. FoudaM.M. AbualsaudK. YaacoubE. AlsabaanM. GuizaniM. Lightweight multi-class support vector machine-based medical diagnosis system with privacy preservation.Sensors20232322903310.3390/s23229033 38005421
    [Google Scholar]
  40. XuM. MaX. WenZ. TangS. YangX. HuangW. Application of support vector machine in the diagnosis of hypertension in TCM syndrome.Zhonghua Zhongyiyao Zazhi20173224972500
    [Google Scholar]
  41. DaiW. LiuX. ZhangZ. ChenJ. GuoR. ZhengH. JinX. WenS. GaoY. LiT. LuP. ZhangY. A two-level model for the analysis of syndrome of acute ischemic stroke: From diagnostic model to molecular mechanism.Evid. Based Complement. Alternat. Med.2013201311510.1155/2013/293010 23662126
    [Google Scholar]
  42. ZhouH. LiL. ZhaoH. WangY. DuJ. ZhangP. LiC. WangX. LiuY. XuQ. ZhangT. SongY. YuC. LiY. A large-scale, multi-center urine biomarkers identification of coronary heart disease in TCM syndrome differentiation.J. Proteome Res.20191851994200310.1021/acs.jproteome.8b00799 30907085
    [Google Scholar]
  43. LvQ. ChenG. HeH. YangZ. ZhaoL. ZhangK. ChenC.Y.C. TCMBank-the largest TCM database provides deep learning-based Chinese-Western medicine exclusion prediction.Signal Transduct. Target. Ther.20238112710.1038/s41392‑023‑01339‑1 36997527
    [Google Scholar]
  44. MatosL.C. MachadoJ.P. MonteiroF.J. GretenH.J. Can traditional chinese medicine diagnosis be parameterized and standardized? a narrative review.Health Care20219217710.3390/healthcare9020177 33562368
    [Google Scholar]
  45. MaS. LiuJ. LiW. LiuY. HuiX. QuP. JiangZ. LiJ. WangJ. Machine learning in TCM with natural products and molecules: Current status and future perspectives.Chin. Med.20231814310.1186/s13020‑023‑00741‑9 37076902
    [Google Scholar]
  46. SilvaP. GagoP. RibeiroJ.C.B. SantosM.F. PortelaF. AbelhaA. MachadoJ. PintoF. An expert system for supporting traditional chinese medicine diagnosis and treatment.Procedia Technol.2014161487149210.1016/j.protcy.2014.10.169
    [Google Scholar]
  47. ZhangH. NiW. LiJ. ZhangJ. Artificial intelligence–based traditional chinese medicine assistive diagnostic system: Validation study.JMIR Med. Inform.202086e1760810.2196/17608 32538797
    [Google Scholar]
  48. LiangX. LiH. LiS. A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study.Mol. Biosyst.20141051014102210.1039/C3MB70507B 24492828
    [Google Scholar]
  49. HaoT. HuangZ. LiangL. WengH. TangB. Health natural language processing: Methodology development and applications.JMIR Med. Inform.2021910e2389810.2196/23898 34673533
    [Google Scholar]
  50. CaiJ. ChenS. GuoS. WangS. LiL. LiuX. ZhengK. LiuY. ChenS. RegEMR: A natural language processing system to automatically identify premature ovarian decline from Chinese electronic medical records.BMC Med. Inform. Decis. Mak.202323112610.1186/s12911‑023‑02239‑8 37464410
    [Google Scholar]
  51. XuQ. BauerR. HendryB.M. FanT.P. ZhaoZ. DuezP. SimmondsM.S.J. WittC.M. LuA. RobinsonN. GuoD. HylandsP.J. The quest for modernisation of traditional Chinese medicine.BMC Complement. Altern. Med.201313113210.1186/1472‑6882‑13‑132 23763836
    [Google Scholar]
  52. WuC. ChenJ. Lai-HanL.E. ChangH. WangX. Editorial: Artificial intelligence in traditional medicine.Front. Pharmacol.20221393313310.3389/fphar.2022.933133 35991902
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073293191240212091028
Loading
/content/journals/cchts/10.2174/0113862073293191240212091028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test