Skip to content
2000
Volume 28, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Objectives

This study aimed to explore new therapeutic drugs for multiple myeloma (MM). MM is a common plasma cell malignant proliferative disease, accounting for 15% of hematological malignancies. The role of daptomycin (DAP), a potential anti-tumor drug, remains unclear in MM. In the present research, we investigated the anticancer effect of DAP in MM cell line RPMI 8226.

Methods

RPMI 8226 cells were treated with DAP (20 μM, 40 μM, and 80 μM) with 20 nM bortezomib (BZ) as a positive control. Cell function was detected using CCK8, flow cytometry, and transwell assay.

Results

In MM cells, DAP inhibited proliferation and induced apoptosis. The cell cycle was arrested at the G1 phase after the treatment of DAP. The migration and invasion abilities were also inhibited by DAP treatment in RPMI 8226 cells. Importantly, the mRNA and protein levels of RPS19 were downregulated in DAP-treated RPMI 8226 cells.

Conclusion

DAP inhibited the proliferation, migration, and invasion and promoted the apoptosis of MM cells. Mechanistically, the RPS19 expression was significantly decreased in DAP-treated cells. This research provides a potential therapeutic drug for MM therapy.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073283460240129104114
2024-03-06
2025-03-29
Loading full text...

Full text loading...

References

  1. BladéJ. Teresa CibeiraM. Fernández de LarreaC. RosiñolL. Multiple myeloma.Ann. Oncol.201021vii313vii31910.1093/annonc/mdq363 20943635
    [Google Scholar]
  2. CowanA.J. GreenD.J. KwokM. LeeS. CoffeyD.G. HolmbergL.A. TuazonS. GopalA.K. LibbyE.N. Diagnosis and management of multiple myeloma.JAMA2022327546447710.1001/jama.2022.0003 35103762
    [Google Scholar]
  3. RajkumarS.V. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management.Am. J. Hematol.20229781086110710.1002/ajh.26590 35560063
    [Google Scholar]
  4. DasS. JulianaN. YazitN.A.A. AzmaniS. AbuI.F. Multiple myeloma: Challenges encountered and future options for better treatment.Int. J. Mol. Sci.2022233164910.3390/ijms23031649 35163567
    [Google Scholar]
  5. HuangH.W. DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides.Biochim. Biophys. Acta Biomembr.202018621018339510.1016/j.bbamem.2020.183395 32526177
    [Google Scholar]
  6. YeY. XiaZ. ZhangD. ShengZ. ZhangP. ZhuH. XuN. LiangS. Multifunctional pharmaceutical effects of the antibiotic daptomycin.BioMed Res. Int.201920191910.1155/2019/8609218 31263709
    [Google Scholar]
  7. ChoS.M. LeeH.J. KarusoP. KwonH.J. Daptomycin suppresses tumor migration and angiogenesis via binding to ribosomal protein S19 in humans.J. Antibiot.2021741072673310.1038/s41429‑021‑00446‑x 34253886
    [Google Scholar]
  8. RolstonK.V. McConnellS.A. BrownJ. LampK.C. Lamp, Daptomycin use in patients with cancer and neutropenia: Data from a retrospective registry.Clin. Adv. Hematol. Oncol.201084249256
    [Google Scholar]
  9. PatelK. KabirR. AhmadS. AllenS.L. Assessing outcomes of adult oncology patients treated with linezolid versus daptomycin for bacteremia due to vancomycin-resistant Enterococcus.J. Oncol. Pharm. Pract.201622221221810.1177/1078155214556523 25326010
    [Google Scholar]
  10. LeeY. PhatC. HongS.C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications.Peptides2017959410510.1016/j.peptides.2017.06.002 28610952
    [Google Scholar]
  11. GotsbacherM.P. ChoS. KwonH.J. KarusoP. Daptomycin, a last-resort antibiotic, binds ribosomal protein S19 in humans.Proteome Sci.20161511610.1186/s12953‑017‑0124‑2 28680364
    [Google Scholar]
  12. LiuJ. PengY. WeiW. Cell cycle on the crossroad of tumorigenesis and cancer therapy.Trends Cell Biol.2022321304410.1016/j.tcb.2021.07.001 34304958
    [Google Scholar]
  13. Van der AuweraP. HussonM. Influence of antibiotics on motility and adherence of human neutrophils studied in vitro.Drugs Exp. Clin. Res.1989155211218 2791872
    [Google Scholar]
  14. MuensterS. ZschernackV. DierigB. FredeS. BaumgartenG. CoburnM. PutensenC. WeisheitC.K. Vancomycin and daptomycin modulate the innate immune response in a murine model of LPS-induced sepsis.Int. J. Immunopathol. Pharmacol.202135058738421103137310.1177/20587384211031373 34296627
    [Google Scholar]
  15. DianzaniI. GarelliE. RamenghiU. Diamond-blackfan anaemia.Paediatr. Drugs20002534535610.2165/00128072‑200002050‑00002 11022796
    [Google Scholar]
  16. AhamadJ. OjhaS. SrivastavaA. BhattacharyaA. BhattacharyaS. Post-transcriptional regulation of ribosomal protein genes during serum starvation in Entamoeba histolytica.Mol. Biochem. Parasitol.2015201214615210.1016/j.molbiopara.2015.07.006 26247142
    [Google Scholar]
  17. HiregangeD.G. RivaltaA. YonathA. ZimmermanE. BashanA. YonathH. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan anemia.FEBS Open Bio20221271419143410.1002/2211‑5463.13444 35583751
    [Google Scholar]
  18. VlachosA. Acquired ribosomopathies in leukemia and solid tumors.Hematology (Am. Soc. Hematol. Educ. Program)20172017171671910.1182/asheducation‑2017.1.716 29222326
    [Google Scholar]
  19. HeX. SmithS.E. ChenS. LiH. WuD. Meneses-GilesP.I. WangY. HembreeM. YiK. ZhaoX. GuoF. UnruhJ.R. MadderaL.E. YuZ. ScottA. PereraA. WangY. ZhaoC. BaeK. BoxA. HaugJ.S. TaoF. HuD. HansenD.M. QianP. SahaS. DixonD. AnantS. ZhangD. LinE.H. SunW. WiedemannL.M. LiL. Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and pro-tumorigenic niche.Cell Rep.2021361010967410.1016/j.celrep.2021.109674 34496236
    [Google Scholar]
  20. KangJ. BrajanovskiN. ChanK.T. XuanJ. PearsonR.B. SanijE. Ribosomal proteins and human diseases: Molecular mechanisms and targeted therapy.Signal Transduct. Target. Ther.20216132310.1038/s41392‑021‑00728‑8 34462428
    [Google Scholar]
  21. PecoraroA. PaganoM. RussoG. RussoA. Ribosome biogenesis and cancer: Overview on ribosomal proteins.Int. J. Mol. Sci.20212211549610.3390/ijms22115496 34071057
    [Google Scholar]
  22. ChenK.C. HsuW.H. HoJ.Y. LinC.W. ChuC.Y. KandaswamiC.C. LeeM.T. ChengC.H. Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction.Yao Wu Shi Pin Fen Xi201826311801191 29976410
    [Google Scholar]
  23. HaqueM. JahanD. Al HasanM.M. Diamond–Blackfan anemia with mutation in RPS19: A case report and an overview of published pieces of literature.J. Pharm. Bioallied Sci.202012216317010.4103/jpbs.JPBS_234_19 32742115
    [Google Scholar]
  24. FlygareJ. AspesiA. BaileyJ.C. MiyakeK. CaffreyJ.M. KarlssonS. EllisS.R. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits.Blood2007109398098610.1182/blood‑2006‑07‑038232 16990592
    [Google Scholar]
  25. KondohN. SchweinfestC.W. HendersonK.W. PapasT.S. Differential expression of S19 ribosomal protein, laminin-binding protein, and human lymphocyte antigen class I messenger RNAs associated with colon carcinoma progression and differentiation.Cancer Res.1992524791796 1339304
    [Google Scholar]
  26. MarkiewskiM.M. VadrevuS.K. SharmaS.K. ChintalaN.K. GhouseS. ChoJ.H. FairlieD.P. PatersonY. AstrinidisA. KarbowniczekM. The ribosomal protein s19 suppresses antitumor immune responses via the complement C5a receptor 1.J. Immunol.201719872989299910.4049/jimmunol.1602057 28228558
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073283460240129104114
Loading
/content/journals/cchts/10.2174/0113862073283460240129104114
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; bortezomib; cells; daptomycin; Multiple myeloma; RPS19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test