Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Purpose

Atherosclerosis is the most common and significant form of arterial disease, characterized primarily by lipid accumulation and inflammatory cell infiltration as its main pathological basis. This study aims to investigate the molecular mechanisms and associated pathways by which iron accumulation may be involved in lipid metabolism abnormalities in atherosclerotic mice.

Methods

Relying on ApoE-/- mouse body position observation, blood biochemical analysis, oxidative stress test and aortic tissue sectioning techniques, the effects of ferroptosis on lipid metabolism in atherosclerotic mice were analyzed. Use RT-PCR analysis and transcriptomics tests to understand the specific molecular mechanism.

Results

Our analysis reveals a correlation between Ferroptosis and elevated levels of TC, TG, ALT, AST, IL-1β, and TNF-α in the blood of atherosclerotic model mice. At the same time, it exacerbates the pathological changes of mouse aorta tissue. Our results suggest a potential link between ferroptosis and the dysregulation of TFR1/SLC11A2/GPX4 expression, along with the presence of oxidative stress, in the progression of AS. Transcriptomics results indicate that ferroptosis-mediated deterioration of atherosclerosis in ApoE-/- mice is potentially associated with cell phagocytosis, apoptosis involving TNF-α, and the expression of atherosclerotic and other process-related genes.

Conclusion

Ferroptosis exacerbated the lipid metabolism disorder in atherosclerotic mice. The core mechanism of its effect is that ferroptosis activates the TFR1/SLC11A2/GPX4 signaling pathway, which leads to the up-regulation of oxidative stress in ApoE-/- mice, and ultimately aggravates the abnormal lipid metabolism in ApoE-/- mice.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073271348231213071225
2024-01-10
2025-04-02
Loading full text...

Full text loading...

References

  1. HerringtonW. LaceyB. SherlikerP. ArmitageJ. LewingtonS. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease.Circ. Res.2016118453554610.1161/CIRCRESAHA.115.307611 26892956
    [Google Scholar]
  2. ZhuY. XianX. WangZ. BiY. ChenQ. HanX. TangD. ChenR. Research progress on the relationship between atherosclerosis and inflammation.Biomolecules2018838010.3390/biom8030080 30142970
    [Google Scholar]
  3. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  4. ForresterS.J. KikuchiD.S. HernandesM.S. XuQ. GriendlingK.K. Reactive oxygen species in metabolic and inflammatory signaling.Circ. Res.2018122687790210.1161/CIRCRESAHA.117.311401 29700084
    [Google Scholar]
  5. TiongA.Y. BriegerD. Inflammation and coronary artery disease.Am. Heart J.20051501111810.1016/j.ahj.2004.12.019 16084145
    [Google Scholar]
  6. LassègueB. GriendlingK.K. NADPH oxidases: functions and pathologies in the vasculature.Arterioscler. Thromb. Vasc. Biol.201030465366110.1161/ATVBAHA.108.181610 19910640
    [Google Scholar]
  7. KattoorA.J. KanuriS.H. MehtaJ.L. Role of Ox-LDL and LOX-1 in atherogenesis.Curr. Med. Chem.20192691693170010.2174/0929867325666180508100950 29737246
    [Google Scholar]
  8. PerrottaI. AquilaS. The role of oxidative stress and autophagy in atherosclerosis.Oxid. Med. Cell. Longev.2015201511010.1155/2015/130315 25866599
    [Google Scholar]
  9. HarjasoulihaA. RaijiV. Garcia GonzalezJ.M. Review of hypertensive retinopathy.Dis. Mon.2017633636910.1016/j.disamonth.2016.10.002 27931746
    [Google Scholar]
  10. BentzonJ.F. OtsukaF. VirmaniR. FalkE. Mechanisms of plaque formation and rupture.Circ. Res.2014114121852186610.1161/CIRCRESAHA.114.302721 24902970
    [Google Scholar]
  11. ChenD. ChuB. YangX. LiuZ. JinY. KonN. RabadanR. JiangX. StockwellB.R. GuW. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4.Nat. Commun.2021121364410.1038/s41467‑021‑23902‑6
    [Google Scholar]
  12. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  13. XieY. HouW. SongX. YuY. HuangJ. SunX. KangR. TangD. Ferroptosis: process and function.Cell Death Differ.201623336937910.1038/cdd.2015.158 26794443
    [Google Scholar]
  14. KoppulaP. ZhangY. ShiJ. LiW. GanB. The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate.J. Biol. Chem.201729234142401424910.1074/jbc.M117.798405 28630042
    [Google Scholar]
  15. ChenD. FanZ. RauhM. BuchfelderM. EyupogluI.Y. SavaskanN. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner.Oncogene201736405593560810.1038/onc.2017.146 28553953
    [Google Scholar]
  16. YangW.S. SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; Brown, L.M.; Girotti, A.W.; Cornish, V.W.; Schreiber, S.L.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.010 24439385
    [Google Scholar]
  17. KaganV.E. MaoG. QuF. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nat. Chem. Biol.2017131819010.1038/nchembio.2238
    [Google Scholar]
  18. AjoolabadyA. AslkhodapasandhokmabadH. LibbyP. TuomilehtoJ. LipG.Y.H. PenningerJ.M. RichardsonD.R. TangD. ZhouH. WangS. KlionskyD.J. KroemerG. RenJ. Ferritinophagy and ferroptosis in the management of metabolic diseases.Trends Endocrinol. Metab.202132744446210.1016/j.tem.2021.04.010 34006412
    [Google Scholar]
  19. LiS. ZhengL. ZhangJ. LiuX. WuZ. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy.Free Radic. Biol. Med.202116243544910.1016/j.freeradbiomed.2020.10.323
    [Google Scholar]
  20. ChengX.L. DingF. WangD.P. ZhouL. CaoJ.M. Hexarelin attenuates atherosclerosis via inhibiting LOX-1-NF-κB signaling pathway-mediated macrophage ox-LDL uptake in ApoE-/- mice.Peptides201912117012210.1016/j.peptides.2019.170122 31386895
    [Google Scholar]
  21. ChiD.H. KahyoT. IslamA. HasanM.M. WaliullahA.S.M. MamunM.A. NakajimaM. IkomaT. AkitaK. MaekawaY. SatoT. SetouM. NAD + levels are augmented in aortic tissue of ApoE −/− mice by dietary omega-3 fatty acids.Arterioscler. Thromb. Vasc. Biol.202242439540610.1161/ATVBAHA.121.317166 35139656
    [Google Scholar]
  22. LiuS. ZhangY. ZhengX. Sulforaphane inhibits foam cell formation and atherosclerosis via mechanisms involving the modulation of macrophage cholesterol transport and the related phenotype.Nutrients2023159211710.3390/nu15092117
    [Google Scholar]
  23. YangJ. MaX. NiuD. PCSK9 inhibitors suppress oxidative stress and inflammation in atherosclerotic development by promoting macrophage autophagy.Am. J. Transl. Res.202315851295144
    [Google Scholar]
  24. DuZ. ZhaoX. SunL. ChiB. MaZ. TianZ. LiuY. Untargeted lipidomics-based study reveals the treatment mechanism of Qingxue Bawei tablets on atherosclerotic in ApoE−/− mice.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2023122912388910.1016/j.jchromb.2023.123889 37738809
    [Google Scholar]
  25. PalmerA.J. ChungM.Y. ListE.O. WalkerJ. OkadaS. KopchickJ.J. BerrymanD.E. Age-related changes in body composition of bovine growth hormone transgenic mice.Endocrinology200915031353136010.1210/en.2008‑1199 18948397
    [Google Scholar]
  26. LiH. WangR. WangL. LiL. MaY. ZhouS. Bovine milk fat globule epidermal growth factor VIII activates PI3K/Akt signaling pathway and attenuates sarcopenia in rat model induced by d-galactose.Food Biosci.20214010.1016/j.fbio.2020.100847
    [Google Scholar]
  27. XiaoS. MaoL. XiaoJ. WuY. LiuH. Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress.Eur. J. Pharmacol.202190217412010.1016/j.ejphar.2021.174120 33905703
    [Google Scholar]
  28. XuY. WangM. XieY. JiangY. LiuM. YuS. WangB. LiuQ. Activation of GPR39 with the agonist TC-G 1008 ameliorates ox-LDL-induced attachment of monocytes to endothelial cells.Eur. J. Pharmacol.201985817245110.1016/j.ejphar.2019.172451 31202806
    [Google Scholar]
  29. ChenX. LiJ. KangR. KlionskyD.J. TangD. Ferroptosis: machinery and regulation.Autophagy2020128 32804006
    [Google Scholar]
  30. ChenX. YuC. KangR. KroemerG. TangD. Cellular degradation systems in ferroptosis.Cell Death Differ.20212841135114810.1038/s41418‑020‑00728‑1 33462411
    [Google Scholar]
  31. KwonM.Y. ParkE. LeeS.J. ChungS.W. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death.Oncotarget2015627243932440310.18632/oncotarget.5162 26405158
    [Google Scholar]
  32. PiedrahitaJ.A. ZhangS.H. HagamanJ.R. Cell19927134335310.1016/0092‑8674(92)90362‑G 1423598
    [Google Scholar]
  33. SuG. YangW. WangS. GengC. GuanX. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1B and IL-18.BBRC2021561333910.1016/j.bbrc.2021.05.011
    [Google Scholar]
  34. AjoolabadyA. AslkhodapasandhokmabadH. AghanejadA. ZhangY. RenJ. Mitophagy receptors and mediators: Therapeutic targets in the management of cardiovascular ageing.Ageing Res. Rev.20206210112910.1016/j.arr.2020.101129 32711157
    [Google Scholar]
  35. LiuJ. KuangF. KroemerG. KlionskyD.J. KangR. TangD. Autophagy-dependent ferroptosis: Machinery and regulation.Cell Chem. Biol.202027442043510.1016/j.chembiol.2020.02.005 32160513
    [Google Scholar]
  36. QiuY. CaoY. CaoW. JiaY. LuN. The application of ferroptosis in diseases.Pharmacol. Res.202015910491910.1016/j.phrs.2020.104919 32464324
    [Google Scholar]
  37. ZhouY. ZhouH. HuaL. HouC. JiaQ. ChenJ. ZhangS. WangY. HeS. JiaE. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis.Free Radic. Biol. Med.2021171556810.1016/j.freeradbiomed.2021.05.009 33974977
    [Google Scholar]
  38. Negre-SalvayreA. GuerbyP. GayralS. LaffargueM. SalvayreR. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models.Free Radic. Biol. Med.202014982210.1016/j.freeradbiomed.2019.10.011 31669759
    [Google Scholar]
  39. ManzoniA.G. PassosD.F. da SilvaJ.L.G. Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia.Blood Cells Mol. Dis.201976132110.1016/j.bcmd.2018.12.005
    [Google Scholar]
  40. WangH. ChengY. MaoC. Emerging mechanisms and targeted therapy of ferroptosisin cancer.Mol. Ther.20212972185220810.1016/j.ymthe.2021.03.022
    [Google Scholar]
  41. UrsiniF. MaiorinoM. GregolinC. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase.Biochim. Biophys. Acta, Gen. Subj.19858391627010.1016/0304‑4165(85)90182‑5 3978121
    [Google Scholar]
  42. JiucuiL. KongmiaoL. FenglanS. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway.J. Transl. Med.198519196
    [Google Scholar]
  43. Friedmann AngeliJ.P. SchneiderM. PronethB. TyurinaY.Y. TyurinV.A. HammondV.J. HerbachN. AichlerM. WalchA. EggenhoferE. BasavarajappaD. RådmarkO. KobayashiS. SeibtT. BeckH. NeffF. EspositoI. WankeR. FörsterH. YefremovaO. HeinrichmeyerM. BornkammG.W. GeisslerE.K. ThomasS.B. StockwellB.R. O’DonnellV.B. KaganV.E. SchickJ.A. ConradM. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.Nat. Cell Biol.201416121180119110.1038/ncb3064 25402683
    [Google Scholar]
  44. DixonS.J. StockwellB.R. The role of iron and reactive oxygen species in cell death.Nat. Chem. Biol.201410191710.1038/nchembio.1416 24346035
    [Google Scholar]
  45. QinY. QiaoY. WangD. TangC. YanG. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications.Biomed. Pharmacother.2021141111872
    [Google Scholar]
  46. ZhengJ. ConradM. The metabolic underpinnings of ferroptosis.Cell Metab.202032692093710.1016/j.cmet.2020.10.011 33217331
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073271348231213071225
Loading
/content/journals/cchts/10.2174/0113862073271348231213071225
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ApoE-/- mice; Atherosclerosis; fat metabolism; ferroptosis; GPX4; SLC11A2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test