Skip to content
2000
Volume 28, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

(mulberry) is not only a delicious fruit with rich phytonutrients and health functions but also a medicinal plant with many clinical therapeutic values for tonifying kidneys and consolidating essence, making hair black and eyes bright.

Methods

The related references about in this review from 1996 to 2022 had been collected from both online and offline databases, including PubMed, Elsevier, SciFinder, Willy, SciHub, Scopus, Web of Science, ScienceDirect, SpringerLink, Google Scholar, Baidu Scholar, ACS publications, and CNKI. The other information was acquired from ancient books and classical works about .

Results

An updated summary of phytonutrients from was listed as fellows: flavonoids (-) (23.5%), phenolic acids (-) 16.5%), alkaloids (-) (48.2%), polysaccharides (-) (3.5%), other compounds (-) (8.3%). The above chemical components were detected by TLC, UV-Vis, HPLC, GC-MS, and AAS methods for their quality standards. The various bioactivities (hepatoprotective, immunomodulatory, anti-oxidant, hypoglycemic, anti-cancer, and other activities) of mulberry are summarized and discussed in this review, which laid an important basis for analyzing their mechanisms and quality markers. This review summarized its applications for vinegar, wine, yogurt, drink, jelly, and sweetmeat in food fields, and the existing problems and future development directions are also discussed in this review.

Conclusions

This review made a comprehensive description of , including botany, phytonutrient, detection, bioactivity, quality marker, and application. It will not only provide some important clues for further studying , but also provide some valuable suggestions for in-depth research and development of .

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073270666231206093528
2024-01-24
2025-01-19
Loading full text...

Full text loading...

References

  1. LiS. JinC. GaoP. ZhouW. XiaoR. ZhangZ. LiaoW. DingK. A novel pectin-like glycopeptide isolated from the fruit of Fructus mori impedes aggregation and production of Aβ42.J. Agric. Food Chem.202270329908991810.1021/acs.jafc.2c03823 35924862
    [Google Scholar]
  2. JiangY. LiB. GuoX.J. Extraction and determination of polysaccharides from Xinjiang black mulberry.Shipin Kexue200829224226
    [Google Scholar]
  3. Ping-PingW. Wen-DuoW. ChunC. XiongF. Rui-HaiL. Effect of Fructus Mori. bioactive polysaccharide conjugation on improving functional and antioxidant activity of whey protein.Int. J. Biol. Macromol.202014876176710.1016/j.ijbiomac.2020.01.195 31978477
    [Google Scholar]
  4. WangX. DengQ.F. ChenH.G. ZhouX. [Characterization and activity effect on ADH of polysaccharides from Mori Fructus].Zhongguo Zhongyao Zazhi2017421223292333 28822188
    [Google Scholar]
  5. LiuY. QinL.L. LanY.Y. 'Research progress on chemical constituents, phrmcological effects and quality markers of Fructus mori.Chongqing Med.20215010631067
    [Google Scholar]
  6. PengK.X. ZhengY.H. ChenX.M. Research progress of Fructus mori active ingredients and their usage in modern food development.J. Huaiyin Inst. Technol.202130914
    [Google Scholar]
  7. WangC. ChengW. BaiS. YeL. DuJ. ZhongM. LiuJ. ZhaoR. ShenB. White mulberry fruit polysaccharides enhance endothelial nitric oxide production to relax arteries in vitro and reduce blood pressure in vivo.Biomed. Pharmacother.201911610902210.1016/j.biopha.2019.109022 31154271
    [Google Scholar]
  8. HeX. FangJ. RuanY. WangX. SunY. WuN. ZhaoZ. ChangY. NingN. GuoH. HuangL. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review.Food Chem.201824589991010.1016/j.foodchem.2017.11.084 29287458
    [Google Scholar]
  9. ErcisliS. OrhanE. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits.Food Chem.200710341380138410.1016/j.foodchem.2006.10.054
    [Google Scholar]
  10. LiE. YangS. ZouY. ChengW. LiB. HuT. LiQ. WangW. LiaoS. PangD. Purification, characterization, prebiotic preparations and antioxidant aactivity of oligosaccharides from Mulberries.Molecules20192412232910.3390/molecules24122329 31242560
    [Google Scholar]
  11. ZhangJ.Q. ChenC. FuX. LiuR.H. A study on the Fe 3 O 4 @ Fructus mori L. polysaccharide particles with enhanced antioxidant activity and bioavailability.Food Funct.20201132268227810.1039/C9FO03047F 32103220
    [Google Scholar]
  12. ChenX.Q. ZhouL. ZuoZ.L. ZhuX.H. DingJ. ShaoH.Y. 'Extraction and stability of mulberry red pigment under ultrasound.J. Southwest Univ. Natl.20044458459
    [Google Scholar]
  13. WangH.F. LiH.S. HanS.Z. LiG.C. LuZ.Y. Processing and utilization of mulberry.J. Ningbo Univ.1999128182
    [Google Scholar]
  14. WeiY.D. SunT.T. LiuH.H. PeiZ.L. JiangL.F. LiR. HuangS.Y. Ultrasonic extraction and identification of total flavonoids from mulberry.Lishizhen Med. Mater. Med. Res.20122328112812
    [Google Scholar]
  15. MaY. ZhaoL.F. LvZ.Y. SunL. WuW. LiuS.Y. Analysis of flavonoids and polyphenols in mulberry by high performance liquid chromatography-quadrupole electrostatic field orbital trap high resolution mass spectrometry.J. Chin. Mass Spectrom. Soc.2017384551
    [Google Scholar]
  16. WangH. ZhuH.P. LiW.Z. RuanM.J. Analysis of anthocyanins in mulberry extract and its antioxidant activity in vitro.Shipin Yu Fajiao Gongye201945170175
    [Google Scholar]
  17. DuX. ZhouS.T. LiC.M. Study on the technology of producing high purity mulberry and raspberry anthocyanins in large scale by medium pressure rapid separation system.Sci. Technol. Food Ind.202041175181
    [Google Scholar]
  18. MaJ.T. LiuL. LiuG.Y. WangL. MaL. ShenX.M. HuX.X. LuW. LiuZ.H. Simultaneous determination of five anthocyanins in mulberry health wine by UPLC-Q-Tof/MS.Make Wine20194698100
    [Google Scholar]
  19. TanJ.Q. WangY. SunQ. HanQ.Y. WangX. Optimization of ultra-high pressure extraction process and component analysis of mulberry anthocyanins.Sci. Technol. Food Ind.201839152158
    [Google Scholar]
  20. LiuC.L. DuanY.H. DaiY. YaoX.S. [Study on the chemical constituents of roots and stems of Nardostachys chinensis].Zhong Yao Cai201134812161219 22233035
    [Google Scholar]
  21. DuanS. TangS. QinN. DuanH. [Chemical constituents of Phymatopteris hastate and their antioxidant activity].Zhongguo Zhongyao Zazhi2012371014021407 22860450
    [Google Scholar]
  22. HuangM.J. ZengG.Y. TanJ.B. LiY.L. TanG.S. ZhouY.J. [Studies on flavonoid glycosides of Sarcandra glabra].Zhongguo Zhongyao Zazhi2008331417001702 18841770
    [Google Scholar]
  23. FuchsC. SpitellerG. Rapid and easy identification of isomers of coumaroyl- and caffeoyl-D-quinic acid by gas chromatography/mass spectrometry.J. Mass Spectrom.199631660260810.1002/(SICI)1096‑9888(199606)31:6<602:AID‑JMS338>3.0.CO;2‑9
    [Google Scholar]
  24. XiangT. XiongQ.B. KetutA.I. TezukaY. NagaokaT. WuL.J. KadotaS. Studies on the hepatocyte protective activity and the structure-activity relationships of quinic acid and caffeic acid derivatives from the flower buds of Lonicera bournei.Planta Med.200167432232510.1055/s‑2001‑14337 11458447
    [Google Scholar]
  25. DiniI. TenoreG.C. DiniA. New polyphenol derivative in Ipomoea batatas tubers and its antioxidant activity.J. Agric. Food Chem.200654238733873710.1021/jf061687v 17090114
    [Google Scholar]
  26. YuanQ. ZhaoL. The mulberry (Morus alba L.) fruit-A review of characteristic components and health benefits.J. Agric. Food Chem.20176548103831039410.1021/acs.jafc.7b03614 29129054
    [Google Scholar]
  27. DuK. ChenY. LiJ. TianF. GaoX. ChangY. Determination of antioxidant ingredients in Mori Fructus employing ionic liquid‐assisted miniaturized matrix solid‐phase dispersion extraction via ultra‐performance liquid chromatography.J. Food Biochem.2019434e1280710.1111/jfbc.12807 31353604
    [Google Scholar]
  28. HsiehC.F. ChenY.L. LinG.H. ChanY.F. HsiehP.W. HorngJ.T. 3,4-Dicaffeoylquinic acid from the medicinal plant ilex kaushue disrupts the interaction between the five-fold axis of enterovirus A-71 and the heparan sulfate receptor.J. Virol.2022967e005422110.1128/jvi.00542‑21 35319229
    [Google Scholar]
  29. KimS.B. ChangB.Y. JoY.H. LeeS.H. HanS.B. HwangB.Y. KimS.Y. LeeM.K. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits.J. Ethnopharmacol.2013145139339610.1016/j.jep.2012.11.007 23164765
    [Google Scholar]
  30. WangY. XiangL. WangC. TangC. HeX. PintusG. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract.PLoS One201387e7114410.1371/journal.pone.0071144 23936259
    [Google Scholar]
  31. RuanJ.L. ZouJ.H. CaiY.L. [Studies on chemical constituents in leaf of Isatis indigotica].Zhongguo Zhongyao Zazhi2005301915251526 16335825
    [Google Scholar]
  32. DuanX.J. LiX.M. WangB.G. Chemical constituents of the red alga Symhyocladia latiuscula.Mark. Sci.2007311719
    [Google Scholar]
  33. AsanoN. YamashitaT. YasudaK. IkedaK. KizuH. KamedaY. KatoA. NashR.J. LeeH.S. RyuK.S. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.).J. Agric. Food Chem.20014994208421310.1021/jf010567e 11559112
    [Google Scholar]
  34. KusanoG. OriharaS. TsukamotoD. ShibanoM. CoskunM. GuvencA. ErdurakC.S. Five new nortropane alkaloids and six new amino acids from the fruit of Morus alba LINNE growing in Turkey.Chem. Pharm. Bull.200250218519210.1248/cpb.50.185 11848207
    [Google Scholar]
  35. DengQ. WangX. ChenH. ZhaoC. GongX. ZhouX. Structural characterization, modification and hepatoprotective effects of polysaccharide from Mori Fructus.Int. J. Biol. Macromol.202015335736310.1016/j.ijbiomac.2020.02.300 32112846
    [Google Scholar]
  36. ChenC. HuangQ. YouL.J. FuX. Chemical property and impacts of different polysaccharide fractions from Fructus Mori. on lipolysis with digestion model in vitro.Carbohydr. Polym.201717836036710.1016/j.carbpol.2017.09.015 29050606
    [Google Scholar]
  37. LeeJ.S. SynytsyaA. KimH.B. ChoiD.J. LeeS. LeeJ. KimW.J. JangS. ParkY.I. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.).Int. Immunopharmacol.201317385886610.1016/j.intimp.2013.09.019 24120956
    [Google Scholar]
  38. ChenZ. DuX. YangY. CuiX. ZhangZ. LiY. Comparative study of chemical composition and active components against α ‐glucosidase of various medicinal parts ofMORUS ALBA L.Biomed. Chromatogr.20183211e432810.1002/bmc.4328 29975423
    [Google Scholar]
  39. YiJ.Y. BiJ.F. LiuX. LvJ. ZhouM. WuX.Y. ZhaoY.Y. DuQ.Q. A review:domain fine structure of pectic polysaccharides.Shipin Kexue202041292299
    [Google Scholar]
  40. VoragenA.G.J. CoenenG.J. VerhoefR.P. ScholsH.A. Pectin, a versatile polysaccharide present in plant cell walls.Struct. Chem.200920226327510.1007/s11224‑009‑9442‑z
    [Google Scholar]
  41. IsabelleM. LeeB.L. OngC.N. LiuX. HuangD. Peroxyl radical scavenging capacity, polyphenolics, and lipophilic antioxidant profiles of mulberry fruits cultivated in southern China.J. Agric. Food Chem.200856209410941610.1021/jf801527a 18817415
    [Google Scholar]
  42. LiZ. ChenX. LiuG. LiJ. ZhangJ. CaoY. MiaoJ. Antioxidant activity and mechanism of resveratrol and polydatin isolated from mulberry (Morus alba L.).Molecules20212624757410.3390/molecules26247574 34946655
    [Google Scholar]
  43. WangX. WangH.Q. KangJ. LiuC. ChenR.Y. Studies on chemical constituents from fruits of Morus alba L.Yao Xue Xue Bao2014494504506 24974468
    [Google Scholar]
  44. WangJ.H. WuM.J. TLC identification of three medicinal materials in changshou changle oral liquid.China Pharm.20101937
    [Google Scholar]
  45. TangD. ZhuM.M. ZhaoT. ZhangM. GuX.Y. YingL.Q. Comparative study on different determination methods of anthocyanins in Fructus mori.Anhui Nongye Kexue20124052075208
    [Google Scholar]
  46. LiuY.L. JiG.L. Extraction and content cetermination of polysaccharides from Fructus mori.China Med. Pharm.20122109110
    [Google Scholar]
  47. WuC. XuL. ZhouL. LiuJ.C. YuM.D. HuangX.Z. XiaY.L. Comparative study on different determination methods of red pigment in mulberry.Anhui Nongye Kexue20124052075208
    [Google Scholar]
  48. YanZ.L. LuY. YangT. Spectrophotometric determination of total polyphenols in three colors of mulberry.Chin. J. Spectrosco. Lab.201128325328
    [Google Scholar]
  49. GengD. MaW.F. ZhenH.S. QiuQ. WeiL.H. TangX.L. Determination of rutin in mulberry by RP-HPLC.Zhongguo Shiyan Fangjixue Zazhi2011176365
    [Google Scholar]
  50. YouY.Y. WanD.G. YangW.Y. PeiJ. Study on HPLC chromatogram of mulberry.Shipin Kexue201031141144
    [Google Scholar]
  51. ZhaoK. SuZ.R. YangB.W. TanF. DengJ. Establishment and comparison of determination methods of resveratrol and resveratrol glycoside in mulberry.Shipin Kexue201031241244
    [Google Scholar]
  52. ChenJ. KanJ.Q. YangR.S. GC-MS analysis of aroma components in different mulberry varieties.Shipin Kexue201031239243
    [Google Scholar]
  53. ZhangL. WangH. Analysis of volatile components in mulberry sparkling wine by gas chromatography-mass spectrometry.Acta Sericol. Sin.201036152156
    [Google Scholar]
  54. LiangD. Determination of trace elements in mulberry by flame atomic absorption spectrometry.Process. Agric. Prod.20118102103
    [Google Scholar]
  55. ChengK.C. WangC.J. ChangY.C. HungT.W. LaiC.J. KuoC.W. HuangH.P. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo.Yao Wu Shi Pin Fen Xi2020281849310.38212/2224‑6614.1223 31883611
    [Google Scholar]
  56. PeiL. WanT. WangS.F. YangL.L. Effects of mulberry anthocyanin extract on brown adipose tissue changes in mice induced by high fat alcohol diet.J. Trop. Med.201818561564
    [Google Scholar]
  57. YanF. ChenX. ZhengX. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (LO2) and Caenorhabditis elegans under hyperglycemic conditions.Food Res. Int.201710221322410.1016/j.foodres.2017.10.009 29195942
    [Google Scholar]
  58. ZhouX. DengQ. ChenH. HuE. ZhaoC. GongX. Characterizations and hepatoprotective effect of polysaccharides from Mori Fructus in rats with alcoholic-induced liver injury.Int. J. Biol. Macromol.2017102606710.1016/j.ijbiomac.2017.03.083 28322946
    [Google Scholar]
  59. ShuG.W. QiuY.H. FuQ. DuanH. YuH.F. DengX.K. Protective effect of total mulberry polysaccharide on acetaminophen-induced acute liver injury in mice. J. South-Central Univ.Nat.201938377382
    [Google Scholar]
  60. PraveenM.A. ParvathyK.R.K. BalasubramanianP. JayabalanR. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota.Trends Food Sci. Technol.201992466410.1016/j.tifs.2019.08.011
    [Google Scholar]
  61. FerreiraS.S. PassosC.P. MadureiraP. VilanovaM. CoimbraM.A. Structure–function relationships of immunostimulatory polysaccharides: A review.Carbohydr. Polym.201513237839610.1016/j.carbpol.2015.05.079 26256362
    [Google Scholar]
  62. RambergJ.E. NelsonE.D. SinnottR.A. Immunomodulatory dietary polysaccharides: A systematic review of the literature.Nutr. J.2010915410.1186/1475‑2891‑9‑54 21087484
    [Google Scholar]
  63. LuoX. WangZ. ZhuH.H. SunJ.X. LiL.L. Regulation of mulberry polysaccharide on cyclophosphamide induced immunodeficiency in mice.Xinjiang Yike Daxue Xuebao2018417578
    [Google Scholar]
  64. WangD. LiH. LiB. MaR. ZhangN. ZhangX. JiaoL. WuW. Systematic fractionation and immunoenhancement of water-soluble polysaccharides isolated from fruit of Morus alba L.Int. J. Biol. Macromol.20181161056106310.1016/j.ijbiomac.2018.05.106 29777809
    [Google Scholar]
  65. ShinB.R. KimH.S. YunM.J. LeeH.K. KimY.J. KimS.Y. LeeM.K. HongJ.T. KimY. HanS.B. Promoting effect of polysaccharide isolated from Mori fructus on dendritic cell maturation.Food Chem. Toxicol.20135141141810.1016/j.fct.2012.10.018 23108216
    [Google Scholar]
  66. MillerG. LahrsS. DeMatteoR.P. Overexpression of interleukin‐12 enables dendritic cells to activate NK cells and confer systemic antitumor immunity.FASEB J.200317672873010.1096/fj.02‑0900fje 12594171
    [Google Scholar]
  67. FearonD.T. LocksleyR.M. The instructive role of innate immunity in the acquired immune response.Science19962725258505410.1126/science.272.5258.50 8600536
    [Google Scholar]
  68. YouY.Y. WanD.G. YangW.Y. PeiJ. Effects of four kinds of mulberry herbs on immune function of mice.Pharmacol. Clin. Chin. Mater. Med.2008248384
    [Google Scholar]
  69. GuH.G. HuJ.Y. Effect of mulberry on immune function of yin deficiency mice.Zhongguo Shiyan Fangjixue Zazhi2001440
    [Google Scholar]
  70. ChenC. YouL.J. AbbasiA.M. FuX. LiuR.H. LiC. Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro.Food Funct.20167153053910.1039/C5FO01114K 26569512
    [Google Scholar]
  71. WangW. LiX. BaoX. GaoL. TaoY. Extraction of polysaccharides from black mulberry fruit and their effect on enhancing antioxidant activity.Int. J. Biol. Macromol.2018120Pt B1420142910.1016/j.ijbiomac.2018.09.132 30266643
    [Google Scholar]
  72. WeiW. ZhouW. ZangN. JiangL. Structural analysis of a polysaccharide from Fructus mori albae.Carbohydr. Polym.200770334134410.1016/j.carbpol.2007.04.009
    [Google Scholar]
  73. ZhangP.L. ChenX.X. WangQ. LiuG. ZhangY. YangY. CaoY. Isolation of polysaccharide T3-3 from mulberry and study on anti-aging activity of Caenorhabditis elegans.J. Tianjin Univ. Tradit. Chin. Med.201736136141
    [Google Scholar]
  74. TengY.R. ZhaoL.F. ZhangZ. SunL. LiuS.Y. WuW. Study on anti-oxidation and anti-fatigue activity of mulberry.Ginseng Res.2016282931
    [Google Scholar]
  75. JueD.W. SangX.L. Effect of high-pressure homogenization on antioxidant components and antioxidant activity in mulberry juice.Redai Zuowu Xuebao20173822612265
    [Google Scholar]
  76. GaoP. LvX.L. WangL.Y. WangY.L. WangJ.X. ZhengM. R. Isolation and identification of representative anthocyanins and their antioxidant activities. in vitro.Sci. Technol. Food Ind20187378
    [Google Scholar]
  77. ArfanM. KhanR. RybarczykA. AmarowiczR. Antioxidant activity of mulberry fruit extracts.Int. J. Mol. Sci.20121322472248010.3390/ijms13022472 22408465
    [Google Scholar]
  78. KhanM.A. RahmanA.A. IslamS. KhandokharP. ParvinS. IslamM.B. HossainM. RashidM. SadikG. NasrinS. MollahM.N.H. AlamA.H.M.K. A comparative study on the antioxidant activity of methanolic extracts from different parts of Morus alba L. (Moraceae).BMC Res. Notes2013612410.1186/1756‑0500‑6‑24 23331970
    [Google Scholar]
  79. YangJ.Y. LeeH.S. Evaluation of antioxidant and antibacterial activities of morin isolated from mulberry fruits (Morus alba L.).J. Korean Soc. Appl. Biol. Chem.201255448548910.1007/s13765‑012‑2110‑9
    [Google Scholar]
  80. ChenC. HuangQ. LiC. FuX. Hypoglycemic effects of a Fructus Mori polysaccharide in vitro and in vivo.Food Funct.2017872523253510.1039/C7FO00417F 28650018
    [Google Scholar]
  81. WithersD.J. BurksD.J. ToweryH.H. AltamuroS.L. FlintC.L. WhiteM.F. Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling.Nat. Genet.1999231324010.1038/12631 10471495
    [Google Scholar]
  82. WithersD.J. GutierrezJ.S. ToweryH. BurksD.J. RenJ.M. PrevisS. ZhangY. BernalD. PonsS. ShulmanG.I. Bonner-WeirS. WhiteM.F. Disruption of IRS-2 causes type 2 diabetes in mice.Nature1998391667090090410.1038/36116 9495343
    [Google Scholar]
  83. JiaoY. WangX. JiangX. KongF. WangS. YanC. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats.J. Ethnopharmacol.201719911912710.1016/j.jep.2017.02.003 28163112
    [Google Scholar]
  84. ChenC. YouL.J. HuangQ. FuX. ZhangB. LiuR.H. LiC. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice.Food Funct.2018973732374210.1039/C7FO01346A 29995048
    [Google Scholar]
  85. WangP.P. HuangQ. ChenC. YouL.J. LiuR.H. LuoZ.G. ZhaoM.M. FuX. The chemical structure and biological activities of a novel polysaccharide obtained from Fructus Mori and its zinc derivative.J. Funct. Foods201954647310.1016/j.jff.2019.01.008
    [Google Scholar]
  86. WangY.C. ZhangY.W. ZhengL.H. BaoY.L. WuY. YuC.L. HuangY.X. SunL.G. ZhangY. JiaX.J. LiY.X. Four new alkaloids from the fermentation broth of Armillaria mella.Helv. Chim. Acta201396233033710.1002/hlca.201200186
    [Google Scholar]
  87. ZhangL. ZhouJ. LuoJ. WangQ. LiuJ. ZengQ.Q. Study on mulberry anthocyanins induced autophagy and apoptosis of human gastric cancer SGC-7901 cell autophagy.Zhong Yao Cai201639511341138 30133211
    [Google Scholar]
  88. NieC. ZengQ.Q. ZhangX.F. WangQ. Preliminary study of mulberry anthocyanins on S180 transplanted tumorinhibitory effect and apoptosis effect on cells of value-added.Res. Pract. Chin. Med.2014284448
    [Google Scholar]
  89. JinH.Y. LiuQ. HeW. HuQ.Y. LiuY.F. WangX.F. Effect of mulberry anthocyanins on VEGF, p53 and Ki67 expression in the cancer tissue of breast cancer-bearing nude mice.Prog. Mod. Biomed.20151554555458
    [Google Scholar]
  90. ZhangX.T. FuH.M. ZhouL.T. ZhangC.G. Research progress in chemical constituents and pharmacological effects of resveratrol.Shandong Chem. Ind.2021505860
    [Google Scholar]
  91. ChangW. WangZ. YuanL.J. FuY.J. MiM.T. Effects of mulberry anthocyanin extract on apoptosis and mitochondrial membrane potential of breast cancer cells.Prog. Mod. Biomed.20122242364240
    [Google Scholar]
  92. WangJ. Effect of mulberry anthocyanin drink on motor function recovery in rats with spinal cord injury.Prog. Vet. Med.2018398690
    [Google Scholar]
  93. ChenC. HuangQ. FuX. LiuR.H. In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota.Food Funct.20167114637464310.1039/C6FO01248E 27748781
    [Google Scholar]
  94. LiE. YangH. ZouY. WangH. HuT. LiQ. LiaoS. In-vitro digestion by simulated gastrointestinal juices of Lactobacillus rhamnosus cultured with mulberry oligosaccharides and subsequent fermentation with human fecal inocula.Lebensm. Wiss. Technol.2019101616810.1016/j.lwt.2018.11.029
    [Google Scholar]
  95. ZhuC.L. ChenM. WangM.H. ShenT. QiangQ. WangX.F. JiL.L. FengZ.S. TaoY.X. BaiY.J. HuW.C. Study on anti-inflammatory effect and mechanism of mulberry extract in vitro.Xiandai Shipin Keji2017336166
    [Google Scholar]
  96. LiuH. YangJ. HuangS.W. LiuR.Q. HeY.J. LiuC.H. 'Intervention effect and mechanism of mulberry crude extract on nonylphenol-induced anxiety behavior in rats.Sci. Technol. Food Ind.201738294298
    [Google Scholar]
  97. LiuY.F. PengX.Y. HeH.J. JinC.W. SuS.F. YangX.S. Protective effect of concentrated mulberry juice on spleen of rats with oxidative damage induced by D-galactose.Shipin Kexue201839192199
    [Google Scholar]
  98. BorreY.E. PanagakiT. KoelinkP.J. MorganM.E. HendriksenH. GarssenJ. KraneveldA.D. OlivierB. OostingR.S. Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression.Neuropharmacology20147973874910.1016/j.neuropharm.2013.11.009 24286859
    [Google Scholar]
  99. ZhangJ.Y. CaoH. GongS.X. XuJ. HanY.Q. HanT.J. LiuC.X. The expression of saltiness of traditional Chinese medicine and its application in clinical compatibility.Chin. Tradit. Herbal Drugs20164727972802
    [Google Scholar]
  100. WangX.Y. MaoY.F. ZhangZ.Q. YuY. Effect of mulberry extract on the expression of cell adhesion molecule during experimental arteriosclerosis in rabbits.Zhongguo Laonianxue Zazhi2011610091012
    [Google Scholar]
  101. SuS.L. DuanJ.A. OuY.Z. GuoS. LiuL. Research progress in the chemistry of medicinal plant resources of Moru alba L. in China.Zhongguo Xiandai Zhongyao20121416
    [Google Scholar]
  102. CaoH. ZhangJ.Y. GongS.X. XuJ. ZhangT.J. LiuC.X. The expression of sweeteness of traditional Chinese medicine and its application in clinical compatibility.Chin. Tradit. Herbal Drugs201647533539
    [Google Scholar]
  103. LiS. LiM. YueH. ZhouL. HuangL. DuZ. DingK. Structural elucidation of a pectic polysaccharide from Fructus Mori and its bioactivity on intestinal bacteria strains.Carbohydr. Polym.201818616817510.1016/j.carbpol.2018.01.026 29455974
    [Google Scholar]
  104. YeQ. YangY. ZhouY.Q. HuZ.X. YuanJ.Q. Research progress of sweet components in traditional Chinese medicine.Hunan J. Tradit. Chin. Med.201531205207
    [Google Scholar]
  105. ZhangL.K. YaF.L. ZhangX.D. WangY.Y. DingY. YangY. Effect of cornflower 3-glucoside on platelet parameters in mice fed with high-fat diet.J. Trop. Med.201616145148
    [Google Scholar]
  106. YuY. ChenY. ShiX. YeC. WangJ. HuangJ. ZhangB. DengZ. Hepatoprotective effects of different mulberry leaf extracts against acute liver injury in rats by alleviating oxidative stress and inflammatory response.Food Funct.202213168593860410.1039/D2FO00282E 35894215
    [Google Scholar]
  107. LiuX.M. WuJ.J. LiaoT.S. XiaoG.S. XuY.J. Dynamic changes of main and functional components of mulberry juice during ethanol fermentation.Food Fermentation Eng.200632138141
    [Google Scholar]
  108. XuH.Y. PuZ.Y. WangH.P. SunX.D. LiH.Y. Study on fermentation conditions of mulberry vinegar.Sci. Technol. Food Ind.20092164165
    [Google Scholar]
  109. YuY.J. Study on submerged fermentation technology of mulberry vinegar.China Brew.201011175177
    [Google Scholar]
  110. ShiQ.L. PanM.T. MaZ.R. Study on screening of mulberry brewing strain. Acta Agric.Boreali-occidentalis Sin.200514139141
    [Google Scholar]
  111. HuangZ.Y. LiangG.Q. LiS.M. HeJ. Study on the quality control of mulberry wine brewing.Guangxi Sericulture2013505358
    [Google Scholar]
  112. YueC. GeZ.Q. Study on mulberry health yellow rice wine.Food Ind.2012336669
    [Google Scholar]
  113. GuoW.Y. MaZ.R. YangG.M. BaiY.H. GongY.Z. LiangS.B. Study on the technology of mulberry fermented wine.Make Wine2005328082
    [Google Scholar]
  114. LiuL. YeB. Study on fermentation technology of mulberry and wolfberry nutritional wine.Food Ind.200815153
    [Google Scholar]
  115. TangH.L. XieY.L. Study on processing technology of mulberry wine.Niangjiu Ke-Ji200416162
    [Google Scholar]
  116. ShiQ.L. FanM.T. MaZ.R. Study on processing technology of mulberry wine.Make Wine2005327879
    [Google Scholar]
  117. LvC.X. Study on processing technology of mulberry nutrition and health yoghurt.Grain Oil Process. Food Mach.2002114950
    [Google Scholar]
  118. WangC. ZhouY. GuX.Y. Development of solidified mulberry yoghurt.Food Res. Dev2007286467
    [Google Scholar]
  119. WangH.R. The processing technology of mulberry juice drink.Anhui Nongye Kexue200533112131
    [Google Scholar]
  120. WangY. Development of functional mulberry clear juice drink.Beifang Yuanyi200810187188
    [Google Scholar]
  121. XuA.S. HeJ. Study on compound Lactic acid bacteria drink of mixed juice of mulberry tea.Food Sci. Technol.201338101106
    [Google Scholar]
  122. LiL. QiuQ.F. RenY.H. TanY. Study on compound fruit juice drink of mulberry and grape.Food Ind.201228485
    [Google Scholar]
  123. ZhouJ.H. WeiY.W. Development of children’s health Jelly of mulberry.Food Res. Dev2012338385
    [Google Scholar]
  124. ZhangL. LiF. ZengL. HeX.Y. ZengF.J. Study on processing technology of low sugar mulberry preserved fruit.Shipin Kexue2009344245
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073270666231206093528
Loading
/content/journals/cchts/10.2174/0113862073270666231206093528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test