Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Phage therapy could play an important role in the bacterial pneumonia. However, the exact role of phage therapy in bacterial pneumonia is unclear to date.

Aim

The current study aims to find out the role of phage therapy in preclinical models of bacterial pneumonia.

Methods

The studies were searched in databases with proper MeSH terms along with Boolean operators and selected based on eligibility criteria as per the PRISMA guidelines. The Odd Ratio (OR) was calculated with a 95% confidence interval and the heterogeneity was also calculated. The funnel plot was used to conduct a qualitative examination of publication bias.

Results

The OR was observed to be 0.11 (0.04, 0.27)] after 24 hrs, 0.11 [0.03, 0.34] after 7 days and 0.04 [0.01, 0.15] after 10 days that showed a significant role of phage therapy in reduction of deaths in the bacterial pneumonia models as compared to the placebo group. However, after 48hrs, a non-significant reduction was observed.

Conclusion

There was a significant role of phage therapy in the reduction of deaths in the bacterial pneumonia models.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073267755240126111628
2024-02-14
2025-04-02
Loading full text...

Full text loading...

References

  1. HenigO. KayeK.S. Bacterial pneumonia in older adults.Infect. Dis. Clin. North Am.201731468971310.1016/j.idc.2017.07.015 28916385
    [Google Scholar]
  2. MosierD.A. Bacterial pneumonia.Vet. Clin. North Am. Food Anim. Pract.199713348349310.1016/S0749‑0720(15)30310‑8 9368991
    [Google Scholar]
  3. AlcónA. FàbregasN. TorresA. Pathophysiology of pneumonia.Clin. Chest Med.2005261394610.1016/j.ccm.2004.10.013 15802164
    [Google Scholar]
  4. RouxD. GaudryS. Khoy-EarL. AloulouM. Phillips-HoulbracqM. BexJ. SkurnikD. DenamurE. MonteiroR.C. DreyfussD. RicardJ.D. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.Crit. Care Med.2013419e191e19910.1097/CCM.0b013e31828a25d6 23887232
    [Google Scholar]
  5. SharmaN. SinghA. SharmaR. KumarA. Repurposing of auranofin against bacterial infections: An in silico and in vitro study.Curr. Computeraided Drug Des.202117568770110.2174/13862073MTA4iMjM10 32679020
    [Google Scholar]
  6. PetrosilloN. CataldoM.A. PeaF. Treatment options for community-acquired pneumonia in the elderly people.Expert Rev. Anti Infect. Ther.2015134473485 25746632
    [Google Scholar]
  7. GuptaM. SharmaR. KumarA. Comparative potential of Simvastatin, Rosuvastatin and Fluvastatin against bacterial infection: An in silico and in vitro study.Orient. Pharm. Exp. Med.201919325927510.1007/s13596‑019‑00359‑z
    [Google Scholar]
  8. JhanjiR. SinghA. KumarA. Antibacterial potential of selected phytomolecules: An experimental study.Microbiol. Immunol.202165832533210.1111/1348‑0421.12890 33930208
    [Google Scholar]
  9. HatfullG.F. HendrixR.W. Bacteriophages and their genomes.Curr. Opin. Virol.20111429830310.1016/j.coviro.2011.06.009 22034588
    [Google Scholar]
  10. SharmaS. ChatterjeeS. DattaS. PrasadR. DubeyD. PrasadR.K. VairaleM.G. Bacteriophages and its applications: An overview.Folia Microbiol. 2017621175510.1007/s12223‑016‑0471‑x 27718043
    [Google Scholar]
  11. AckermannH.W. Bacteriophage observations and evolution.Res. Microbiol.2003154424525110.1016/S0923‑2508(03)00067‑6 12798228
    [Google Scholar]
  12. LuongT. SalabarriaA.C. RoachD.R. Phage therapy in the resistance era: Where do we stand and where are we going?Clin. Ther.20204291659168010.1016/j.clinthera.2020.07.014 32883528
    [Google Scholar]
  13. Loc-CarrilloC. AbedonS.T. Pros and cons of phage therapy.Bacteriophage20111211111410.4161/bact.1.2.14590 22334867
    [Google Scholar]
  14. GolkarZ. BagasraO. PaceD.G. Bacteriophage therapy: A potential solution for the antibiotic resistance crisis.J. Infect. Dev. Ctries.20148212913610.3855/jidc.3573 24518621
    [Google Scholar]
  15. TugwellP. ToveyD. PRISMA 2020.J. Clin. Epidemiol.2021134A5A610.1016/j.jclinepi.2021.04.008 34016443
    [Google Scholar]
  16. Sarkis-OnofreR. Catalá-LópezF. AromatarisE. LockwoodC. How to properly use the PRISMA statement.Syst. Rev.202110111710.1186/s13643‑021‑01671‑z 33875004
    [Google Scholar]
  17. SrivastavaR. KumarA. Use of aspirin in reduction of mortality of COVID‐19 patients: A meta‐analysis.Int. J. Clin. Pract.20217511e1451510.1111/ijcp.14515 34118111
    [Google Scholar]
  18. ThakurM. DatusaliaA.K. KumarA. Use of steroids in COVID-19 patients: A meta-analysis.Eur. J. Pharmacol.202291417457910.1016/j.ejphar.2021.174579 34678244
    [Google Scholar]
  19. ChaK. OhH.K. JangJ.Y. JoY. KimW.K. HaG.U. KoK.S. MyungH. Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo.Front. Microbiol.2018969610.3389/fmicb.2018.00696 29755420
    [Google Scholar]
  20. DebarbieuxL. LeducD. MauraD. MorelloE. CriscuoloA. GrossiO. BalloyV. TouquiL. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections.J. Infect. Dis.201020171096110410.1086/651135 20196657
    [Google Scholar]
  21. FortiF. RoachD.R. CaforaM. PasiniM.E. HornerD.S. FiscarelliE.V. RossittoM. CarianiL. BrianiF. DebarbieuxL. GhisottiD. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models.Antimicrob. Agents Chemother.2018626e02573e1710.1128/AAC.02573‑17 29555626
    [Google Scholar]
  22. HenryM. LavigneR. DebarbieuxL. Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections.Antimicrob. Agents Chemother.201357125961596810.1128/AAC.01596‑13 24041900
    [Google Scholar]
  23. HuaY. LuoT. YangY. DongD. WangR. WangY. XuM. GuoX. HuF. HeP. Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice.Front. Microbiol.20188265910.3389/fmicb.2017.02659 29375524
    [Google Scholar]
  24. JeonJ. ParkJ.H. YongD. Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia.BMC Microbiol.20191917010.1186/s12866‑019‑1443‑5 30940074
    [Google Scholar]
  25. PrazakJ. ValenteL.G. ItenM. FedererL. GrandgirardD. SotoS. ReschG. LeibS.L. JakobS.M. HaenggiM. CameronD.R. QueY.A. Benefits of aerosolized phages for the treatment of pneumonia due to methicillin-resistant Staphylococcus aureus: An experimental study in rats.J. Infect. Dis.202222581452145910.1093/infdis/jiab112 33668071
    [Google Scholar]
  26. PrazakJ. ItenM. CameronD.R. SaveJ. GrandgirardD. ReschG. GoepfertC. LeibS.L. TakalaJ. JakobS.M. QueY.A. HaenggiM. Bacteriophages improve outcomes in experimental Staphylococcus aureus ventilator-associated pneumonia.Am. J. Respir. Crit. Care Med.201920091126113310.1164/rccm.201812‑2372OC 31260638
    [Google Scholar]
  27. Gómez-OchoaS.A. PittonM. ValenteL.G. Sosa VesgaC.D. LargoJ. Quiroga-CentenoA.C. Hernández VargasJ.A. Trujillo-CáceresS.J. MukaT. CameronD.R. QueY.A. Efficacy of phage therapy in preclinical models of bacterial infection: A systematic review and meta-analysis.Lancet Microbe2022312e956e96810.1016/S2666‑5247(22)00288‑9 36370748
    [Google Scholar]
  28. Van NieuwenhuyseB. Van der LindenD. ChatzisO. LoodC. WagemansJ. LavigneR. SchrovenK. PaeshuyseJ. de MagnéeC. SokalE. StéphenneX. ScheersI. Rodriguez-VillalobosH. DjebaraS. MerabishviliM. SoentjensP. PirnayJ.P. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler.Nat. Commun.2022131572510.1038/s41467‑022‑33294‑w 36175406
    [Google Scholar]
  29. DickeyJ. PerrotV. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro.PLoS One2019141e020939010.1371/journal.pone.0209390 30650088
    [Google Scholar]
  30. KortrightK.E. ChanB.K. KoffJ.L. TurnerP.E. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria.Cell Host Microbe201925221923210.1016/j.chom.2019.01.014 30763536
    [Google Scholar]
  31. MeloL.D.R. OliveiraH. PiresD.P. DabrowskaK. AzeredoJ. Phage therapy efficacy: A review of the last 10 years of preclinical studies.Crit. Rev. Microbiol.2020461789910.1080/1040841X.2020.1729695 32091280
    [Google Scholar]
  32. ChangR.Y.K. WallinM. LinY. LeungS.S.Y. WangH. MoralesS. ChanH.K. Phage therapy for respiratory infections.Adv. Drug Deliv. Rev.2018133768610.1016/j.addr.2018.08.001 30096336
    [Google Scholar]
  33. CieślikM. BagińskaN. GórskiA. Jończyk-MatysiakE. Animal models in the evaluation of the effectiveness of phage therapy for infections caused by gram-negative bacteria from the ESKAPE group and the reliability of its use in humans.Microorganisms20219220610.3390/microorganisms9020206 33498243
    [Google Scholar]
  34. SharmaR. KumarA. MajeedJ. ThakurA.K. AggarwalG. Drugs acting on the renin-angiotensin-aldosterone system (RAAS) and deaths of COVID-19 patients: A systematic review and meta-analysis of observational studies.Egypt. Heart J.20227416410.1186/s43044‑022‑00303‑8 36068392
    [Google Scholar]
  35. DarbandiN. KomijaniM. TajianiZ. New findings about comparing the effects of antibiotic therapy and phage therapy on memory and hippocampal pyramidal cells in rats.J. Clin. Lab. Anal.20233711-12e2494210.1002/jcla.24942 37455445
    [Google Scholar]
  36. KumarA. Meta-analysis in Clinical Research: Principles and Procedures.Springer202310.1007/978‑981‑99‑2370‑0
    [Google Scholar]
  37. GargA. PosaM.K. KumarA. Diabetes and deaths of COVID-19 patients: Systematic review of meta-analyses.Health Sci. Rep.2023710009910.1016/j.hsr.2023.100099 37229298
    [Google Scholar]
  38. SinghA.K. VidyadhariA. SinghH. HaiderK. KumarA. SharmaM. Role of colchicine in the management of COVID-19 patients: A meta-analysis of cohort and randomized controlled trials.Clin. Epidemiol. Glob. Health20221610109710.1016/j.cegh.2022.101097 35791420
    [Google Scholar]
  39. AlamN. LathaS. KumarA. Safety and efficacy of monoclonal antibodies targeting IL-5 in severe eosinophilic asthma: A systematic review and meta-analysis of randomized controlled trials.Health Sci. Rep.2023810010310.1016/j.hsr.2023.100103
    [Google Scholar]
  40. ThakurM. BabuA. KhatikG.L. DatusaliaA.K. KhatriR. KumarA. Role of baricitinib in COVID-19 patients: A systematic review and meta-analysis.World J. Metaanal.202311412513310.13105/wjma.v11.i4.125
    [Google Scholar]
  41. ThorntonA. LeeP. Publication bias in meta-analysis its causes and consequences.J. Clin. Epidemiol.200053220721610.1016/S0895‑4356(99)00161‑4 10729693
    [Google Scholar]
  42. SuttonA.J. DuvalS.J. TweedieR.L. AbramsK.R. JonesD.R. Empirical assessment of effect of publication bias on meta-analyses.BMJ200032072491574157710.1136/bmj.320.7249.1574 10845965
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073267755240126111628
Loading
/content/journals/cchts/10.2174/0113862073267755240126111628
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test