Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Introduction

Hepatocellular carcinoma (HCC) is a global health problem with increasing morbidity and mortality, and exploring the diagnosis and treatment of HCC at the gene level has become a research hotspot in recent years. As the rate-limiting enzyme of carnosine hydrolysis, CNDP1 participates in the progress of many diseases, but its function in HCC has not been fully elucidated.

Methods

This study firstly screened differentially expressed genes from the biochip related to HCC by bioinformatic analysis, and CNDP1 was finally selected for in-depth study. Then the bioinformatics analysis results were validated by detecting the expression of CNDP1 in human HCC samples and hepatoma cell lines. Furthermore, the effect of CNDP1 on the malignant behavior of hepatoma cell lines were assessed using MTT colorimetric assay, EdU staining assay, colony formation, wound-healing assay and transwell, and the molecular mechanism was also preliminarily explored.

Results

This study found that CNDP1 expression was decreased significantly in human HCC tissues and cell lines, and its overexpression could significantly suppress cell proliferation, migration and invasion of hepatoma cell lines. Mechanistically the GeneMANIA database predicted that CNDP1 could interact with various proteins involved in regulating PI3K-AKT-mTOR signaling pathway. Furthermore, this study showed that CNDP1 overexpression could effectively inhibit the activation of PI3K-AKT-mTOR signaling pathways, more significantly, inhibition of PI3K-AKT-mTOR signaling pathway could disrupt the anti-cancer effect of CNDP1 on HCC.

Conclusion

This study confirm that CNDP1 expression is decreased significantly in HCC, and has potential anti-cancer activity, this discovery provides a cytological basis for further understanding the biological function of CNDP1 and diagnosis and gene therapy of HCC in the future.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096332450240827070033
2024-09-03
2025-04-16
Loading full text...

Full text loading...

References

  1. YangJ.D. HainautP. GoresG.J. AmadouA. PlymothA. RobertsL.R. A global view of hepatocellular carcinoma: trends, risk, prevention and management.Nat. Rev. Gastroenterol. Hepatol.2019161058960410.1038/s41575‑019‑0186‑y 31439937
    [Google Scholar]
  2. McGlynnK.A. PetrickJ.L. El-SeragH.B. Epidemiology of Hepatocellular Carcinoma.Hepatology202173S1Suppl. 141310.1002/hep.31288 32319693
    [Google Scholar]
  3. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.001 33579421
    [Google Scholar]
  4. GanesanP. KulikL.M. Hepatocellular Carcinoma.Clin. Liver Dis.20232718510210.1016/j.cld.2022.08.004 36400469
    [Google Scholar]
  5. CampbellC. WangT. McNaughtonA.L. BarnesE. MatthewsP.C. Risk factors for the development of hepatocellular carcinoma (HCC) in chronic hepatitis B virus (HBV) infection: a systematic review and meta‐analysis.J. Viral Hepat.202128349350710.1111/jvh.13452 33305479
    [Google Scholar]
  6. MohamedE.A. GiamaN.H. AbdallaA.O. ShalehH.M. OseiniA.M. AliH.A. AhmedF. TahaW. Ahmed MohammedH. CvinarJ. WaaeysI.A. AliH. AlloteyL.K. AliA.O. MohamedS.A. HarmsenW.S. AhmmadE.M. BajwaN.A. AfgarsheM.D. ShireA.M. Balls-BerryJ.E. RobertsL.R. High prevalence of chronic viral hepatitis B and C in Minnesota Somalis contributes to rising hepatocellular carcinoma incidence.World J. Gastroenterol.202228355217522910.3748/wjg.v28.i35.5217 36188718
    [Google Scholar]
  7. KandaT. GotoT. HirotsuY. MoriyamaM. OmataM. Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review.Int. J. Mol. Sci.2019206135810.3390/ijms20061358 30889843
    [Google Scholar]
  8. ChenZ. XieH. HuM. HuangT. HuY. SangN. ZhaoY. Recent progress in treatment of hepatocellular carcinoma.Am. J. Cancer Res.202010929933036 33042631
    [Google Scholar]
  9. Muñoz-MartínezS. IserteG. Sanduzzi-ZamparelliM. LlarchN. ReigM. Current pharmacological treatment of hepatocellular carcinoma.Curr. Opin. Pharmacol.20216014114810.1016/j.coph.2021.07.009 34418875
    [Google Scholar]
  10. WangM. MaX. WangG. SongY. ZhangM. MaiZ. ZhouB. YeY. XiaW. Targeting UBR5 in hepatocellular carcinoma cells and precise treatment via echinacoside nanodelivery.Cell. Mol. Biol. Lett.20222719210.1186/s11658‑022‑00394‑w 36224534
    [Google Scholar]
  11. MissiaenR. AndersonN.M. KimL.C. NanceB. BurrowsM. SkuliN. CarensM. RiscalR. SteenselsA. LiF. SimonM.C. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment.Cell Metab.202234811511167.e710.1016/j.cmet.2022.06.010 35839757
    [Google Scholar]
  12. WangS.M. OoiL.L.P.J. HuiK.M. Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma.Clin. Cancer Res.200713216275628310.1158/1078‑0432.CCR‑06‑2236 17975138
    [Google Scholar]
  13. RennerC. ZemitzschN. FuchsB. GeigerK.D. HermesM. HengstlerJ. GebhardtR. MeixensbergerJ. GaunitzF. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model.Mol. Cancer201091210.1186/1476‑4598‑9‑2 20053283
    [Google Scholar]
  14. BanerjeeS. MukherjeeB. PoddarM.K. DunbarG.L. Carnosine improves aging‐induced cognitive impairment and brain regional neurodegeneration in relation to the neuropathological alterations in the secondary structure of amyloid beta (Aβ).J. Neurochem.2021158371072310.1111/jnc.15357 33768569
    [Google Scholar]
  15. RiedlE. KoeppelH. BrinkkoetterP. SternikP. SteinbeisserH. SauerhoeferS. JanssenB. van der WoudeF.J. YardB.A. A CTG polymorphism in the CNDP1 gene determines the secretion of serum carnosinase in Cos-7 transfected cells.Diabetes20075692410241310.2337/db07‑0128 17601991
    [Google Scholar]
  16. PfefferT. WetzelC. KirschnerP. BartosovaM. PothT. SchwabC. PoschetG. ZemvaJ. BulkescherR. DamgovI. ThielC. GarbadeS.F. KlingbeilK. PetersV. SchmittC.P. Carnosinase-1 Knock-Out Reduces Kidney Fibrosis in Type-1 Diabetic Mice on High Fat Diet.Antioxidants2023126127010.3390/antiox12061270 37372000
    [Google Scholar]
  17. ZhangS. AlbrechtT. Rodriguez-NiñoA. QiuJ. SchnuelleP. PetersV. SchmittC.P. van den BornJ. BakkerS.J.L. LammertA. KrämerB.K. YardB.A. HauskeS.J. Carnosinase concentration, activity, and CNDP1 genotype in patients with type 2 diabetes with and without nephropathy.Amino Acids201951461161710.1007/s00726‑018‑02692‑0 30610469
    [Google Scholar]
  18. DaiX. ShiX. LuoM. LiP. GaoY. Integrative analysis of transcriptomic and metabolomic profiles reveals enhanced arginine metabolism in androgen-independent prostate cancer cells.BMC Cancer2023231124110.1186/s12885‑023‑11707‑3 38104097
    [Google Scholar]
  19. GautamP. NairS.C. GuptaM.K. SharmaR. PolisettyR.V. UppinM.S. SundaramC. PuligopuA.K. AnkathiP. PurohitA.K. ChandakG.R. HarshaH.C. SirdeshmukhR. Proteins with altered levels in plasma from glioblastoma patients as revealed by iTRAQ-based quantitative proteomic analysis.PLoS One201279e4615310.1371/journal.pone.0046153 23029420
    [Google Scholar]
  20. ArnerP. HenjesF. SchwenkJ.M. DarmanisS. DahlmanI. IresjöB.M. NarediP. AgustssonT. LundholmK. NilssonP. RydénM. Circulating carnosine dipeptidase 1 associates with weight loss and poor prognosis in gastrointestinal cancer.PLoS One2015104e012356610.1371/journal.pone.0123566 25898255
    [Google Scholar]
  21. RobinsonM.D. McCarthyD.J. SmythG.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics201026113914010.1093/bioinformatics/btp616 19910308
    [Google Scholar]
  22. KolbergL. RaudvereU. KuzminI. AdlerP. ViloJ. PetersonH. g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update).Nucleic Acids Res.202351W1W207W21210.1093/nar/gkad347 37144459
    [Google Scholar]
  23. KanehisaM. FurumichiM. TanabeM. SatoY. MorishimaK. KEGG: new perspectives on genomes, pathways, diseases and drugs.Nucleic Acids Res.201745D1D353D36110.1093/nar/gkw1092 27899662
    [Google Scholar]
  24. OtasekD. MorrisJ.H. BouçasJ. PicoA.R. DemchakB. Cytoscape Automation: empowering workflow-based network analysis.Genome Biol.201920118510.1186/s13059‑019‑1758‑4 31477170
    [Google Scholar]
  25. LiggettW.H.Jr SidranskyD. Role of the p16 tumor suppressor gene in cancer.J. Clin. Oncol.19981631197120610.1200/JCO.1998.16.3.1197 9508208
    [Google Scholar]
  26. PadhiS.S. RoyS. KarM. SahaA. RoyS. AdhyaA. BaisakhM. BanerjeeB. Role of CDKN2A/p16 expression in the prognostication of oral squamous cell carcinoma.Oral Oncol.201773273510.1016/j.oraloncology.2017.07.030 28939073
    [Google Scholar]
  27. MacParlandS.A. LiuJ.C. MaX.Z. InnesB.T. BartczakA.M. GageB.K. ManuelJ. KhuuN. EcheverriJ. LinaresI. GuptaR. ChengM.L. LiuL.Y. CamatD. ChungS.W. SeligaR.K. ShaoZ. LeeE. OgawaS. OgawaM. WilsonM.D. FishJ.E. SelznerM. GhanekarA. GrantD. GreigP. SapisochinG. SelznerN. WinegardenN. AdeyiO. KellerG. BaderG.D. McGilvrayI.D. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations.Nat. Commun.201891438310.1038/s41467‑018‑06318‑7 30348985
    [Google Scholar]
  28. GlavianoA. FooA.S.C. LamH.Y. YapK.C.H. JacotW. JonesR.H. EngH. NairM.G. MakvandiP. GeoergerB. KulkeM.H. BairdR.D. PrabhuJ.S. CarboneD. PecoraroC. TehD.B.L. SethiG. CavalieriV. LinK.H. Javidi-SharifiN.R. ToskaE. DavidsM.S. BrownJ.R. DianaP. StebbingJ. FrumanD.A. KumarA.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer.Mol. Cancer202322113810.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  29. JohnsonP. ZhouQ. DaoD.Y. LoY.M.D. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.2022191067068110.1038/s41575‑022‑00620‑y 35676420
    [Google Scholar]
  30. SingalA.G. LlovetJ.M. YarchoanM. MehtaN. HeimbachJ.K. DawsonL.A. JouJ.H. KulikL.M. AgopianV.G. MarreroJ.A. Mendiratta-LalaM. BrownD.B. RillingW.S. GoyalL. WeiA.C. TaddeiT.H. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma.Hepatology20237861922196510.1097/HEP.0000000000000466 37199193
    [Google Scholar]
  31. KanA. LiuS. HeM. WenD. DengH. HuangL. LaiZ. MZF1 promotes tumour progression and resistance to anti-PD-L1 antibody treatment in hepatocellular carcinoma.JHEP Rep. Innov. Hepatol.2024610093910.1016/j.jhepr.2023.100939
    [Google Scholar]
  32. PuZ. DudaD.G. ZhuY. PeiS. WangX. HuangY. YiP. HuangZ. PengF. HuX. FanX. VCP interaction with HMGB1 promotes hepatocellular carcinoma progression by activating the PI3K/AKT/mTOR pathway.J. Transl. Med.202220121210.1186/s12967‑022‑03416‑5 35562734
    [Google Scholar]
  33. TianL.Y. SmitD.J. JückerM. The Role of PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma Metabolism.Int. J. Mol. Sci.2023243265210.3390/ijms24032652 36768977
    [Google Scholar]
  34. ZhangZ. MiaoL. WuX. LiuG. PengY. XinX. JiaoB. KongX. Carnosine Inhibits the Proliferation of Human Gastric Carcinoma Cells by Retarding Akt/mTOR/p70S6K Signaling.J. Cancer20145538238910.7150/jca.8024 24799956
    [Google Scholar]
  35. OppermannH. FaustH. YamanishiU. MeixensbergerJ. GaunitzF. Carnosine inhibits glioblastoma growth independent from PI3K/Akt/mTOR signaling.PLoS One2019146e021897210.1371/journal.pone.0218972 31247000
    [Google Scholar]
  36. ZhangL. YangH.Q. YangS.Q. WangY. ChenX.J. LuH.S. ZhaoL.P. CNDP2 acts as an activator for human ovarian cancer growth and metastasis via the PI3K/AKT pathway.Technol. Cancer Res. Treat.2023181533033819874773
    [Google Scholar]
  37. ChenH. WangW. XiaoC. XiaD. LiF. LiuS. ACY1 regulating PTEN/PI3K/AKT signaling in the promotion of non-small cell lung cancer progression.Ann. Transl. Med.2021917137810.21037/atm‑21‑3127 34733930
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096332450240827070033
Loading
/content/journals/ccdt/10.2174/0115680096332450240827070033
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CNDP1; gene therapy; HCC; Hepatocellular carcinoma; PI3K-AKT-mTOR; proliferation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test