Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Precision medicine in oncology aims to identify an individualized treatment plan based on genomic alterations in a patient’s tumor. It helps to select the most beneficial therapy for an individual patient. As it is now known that no patient's cancer is the same, and therefore, different patients may respond differently to conventional treatments, precision medicine, which replaces the one-size-fits-all approach, supports the development of tailored treatments for specific cancers of different patients. Patient-specific organoid or spheroid models as 3D cell culture models are very promising for predicting resistance to anti-cancer drugs and for identifying the most effective cancer therapy for high-throughput drug screening combined with genomic analysis in personalized medicine. Because tumor spheroids incorporate many features of solid tumors and reflect resistance to drugs and radiation, as in human cancers, they are widely used in drug screening studies. Testing patient-derived 3D cancer spheroids with some anticancer drugs based on information from molecular profiling can reveal the sensitivity of tumor cells to drugs and provide the right compounds to be effective against resistant cells. Given that many patients do not respond to standard treatments, patient-specific treatments will be more effective, less toxic. They will affect survival better compared to the standard approach used for all patients.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096285910240206044830
2024-03-05
2025-04-13
Loading full text...

Full text loading...

References

  1. DanN. SetuaS. KashyapV. KhanS. JaggiM. YallapuM. ChauhanS. Antibody-drug conjugates for cancer therapy: Chemistry to clinical implications.Pharmaceuticals20181123210.3390/ph1102003229642542
    [Google Scholar]
  2. HuangY. HuangZ. TangZ. ChenY. HuangM. LiuH. HuangW. YeQ. JiaB. Research progress, challenges, and breakthroughs of organoids as disease models.Front. Cell Dev. Biol.2021974057410.3389/fcell.2021.74057434869324
    [Google Scholar]
  3. YangL. ShiP. ZhaoG. XuJ. PengW. ZhangJ. ZhangG. WangX. DongZ. ChenF. CuiH. Targeting cancer stem cell pathways for cancer therapy.Signal Transduct. Target. Ther.202051810.1038/s41392‑020‑0110‑532296030
    [Google Scholar]
  4. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/2050312121103436634408877
    [Google Scholar]
  5. ŞekeroğluZ.A. ŞekeroğluV. KüçükN. Effects of reverse transcriptase inhibitors on proliferation, apoptosis, and migration in breast carcinoma cells.Int. J. Toxicol.2021401526110.1177/109158182096149832975457
    [Google Scholar]
  6. PopovaA.A. LevkinP.A. Precision medicine in oncology: In vitro drug sensitivity and resistance test (DSRT) for selection of personalized anticancer therapy.Adv. Ther.202032190010010.1002/adtp.201900100
    [Google Scholar]
  7. StrianeseO. RizzoF. CiccarelliM. GalassoG. D’AgostinoY. SalvatiA. Del GiudiceC. TesorioP. RuscianoM.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease.Genes202011774710.3390/genes1107074732640513
    [Google Scholar]
  8. VasmatzisG. LiuM.C. RegantiS. FeathersR.W. SmadbeckJ. JohnsonS.H. Schaefer KleinJ.L. HarrisF.R. YangL. KosariF. MurphyS.J. BoradM.J. ThompsonE.A. ChevilleJ.C. AnastasiadisP.Z. Integration of comprehensive genomic analysis and functional screening of affected molecular pathways to inform cancer therapy.Mayo Clin. Proc.202095230631810.1016/j.mayocp.2019.07.01931685261
    [Google Scholar]
  9. FongE.L.S. TohT.B. YuH. ChowE.K.H.III Culture as a clinically relevant model for personalized medicine.SLAS Technol.201722324525310.1177/247263031769725128277923
    [Google Scholar]
  10. KrzyszczykP. AcevedoA. DavidoffE.J. TimminsL.M. Marrero-BerriosI. PatelM. WhiteC. LoweC. SherbaJ.J. HartmanshennC. O’NeillK.M. BalterM.L. FritzZ.R. AndroulakisI.P. SchlossR.S. YarmushM.L. The growing role of precision and personalized medicine for cancer treatment.Technology2018603n047910010.1142/S233954781830002030713991
    [Google Scholar]
  11. ColellaG. FazioliF. GalloM. De ChiaraA. ApiceG. RuosiC. CimminoA. de NigrisF. Sarcoma spheroids and organoids-promising tools in the era of personalized medicine.Int. J. Mol. Sci.201819261510.3390/ijms1902061529466296
    [Google Scholar]
  12. AbugomaaA. ElbadawyM. Patient-derived organoid analysis of drug resistance in precision medicine: is there a value?Expert Rev. Precis. Med. Drug Dev.2020511510.1080/23808993.2020.1715794
    [Google Scholar]
  13. KapałczyńskaM. KolendaT. PrzybyłaW. ZajączkowskaM. TeresiakA. FilasV. IbbsM. BliźniakR. ŁuczewskiŁ. LamperskaK. 2D and 3D cell cultures - A comparison of different types of cancer cell cultures.Arch. Med. Sci.201814491091930002710
    [Google Scholar]
  14. DrostJ. CleversH. Organoids in cancer research.Nat. Rev. Cancer201818740741810.1038/s41568‑018‑0007‑629692415
    [Google Scholar]
  15. JensenC. TengY. Is it time to start transitioning from 2D to 3D cell culture.Front. Mol. Biosci.202073310.3389/fmolb.2020.0003332211418
    [Google Scholar]
  16. LiuK. NewburyP.A. GlicksbergB.S. ZengW.Z.D. PaithankarS. AndrechekE.R. ChenB. Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data.Nat. Commun.2019101213810.1038/s41467‑019‑10148‑631092827
    [Google Scholar]
  17. KatsutaE. RashidO.M. TakabeK. Clinical relevance of tumor microenvironment: Immune cells, vessels, and mouse models.Hum. Cell202033493093710.1007/s13577‑020‑00380‑432507979
    [Google Scholar]
  18. KimJ. KooB.K. KnoblichJ.A. Human organoids: Model systems for human biology and medicine.Nat. Rev. Mol. Cell Biol.2020211057158410.1038/s41580‑020‑0259‑332636524
    [Google Scholar]
  19. CostaE.C. MoreiraA.F. de Melo-DiogoD. GasparV.M. CarvalhoM.P. CorreiaI.J. 3D tumor spheroids: An overview on the tools and techniques used for their analysis.Biotechnol. Adv.20163481427144110.1016/j.biotechadv.2016.11.00227845258
    [Google Scholar]
  20. MagréL. VerstegenM.M.A. BuschowS. van der LaanL.J.W. PeppelenboschM. DesaiJ. Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies.J. Immunother. Cancer2023115e00629010.1136/jitc‑2022‑00629037220953
    [Google Scholar]
  21. BregenzerM.E. HorstE.N. MehtaP. NovakC.M. RaghavanS. SnyderC.S. MehtaG. Integrated cancer tissue engineering models for precision medicine.PLoS One2019145e021656410.1371/journal.pone.021656431075118
    [Google Scholar]
  22. KondoJ. InoueM. Application of cancer organoid model for drug screening and personalized therapy.Cells20198547010.3390/cells805047031108870
    [Google Scholar]
  23. StockK. EstradaM.F. VidicS. GjerdeK. RudischA. SantoV.E. BarbierM. BlomS. ArundkarS.C. SelvamI. OsswaldA. SteinY. GruenewaldS. BritoC. van WeerdenW. RotterV. BoghaertE. OrenM. SommergruberW. ChongY. de HoogtR. GraeserR. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery.Sci. Rep.2016612895110.1038/srep28951
    [Google Scholar]
  24. LanghansS.A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning.Front. Pharmacol.20189610.3389/fphar.2018.0000629410625
    [Google Scholar]
  25. YakavetsI. FrancoisA. BenoitA. MerlinJ.L. BezdetnayaL. VoginG. Advanced co-culture 3D breast cancer model for investigation of fibrosis induced by external stimuli: Optimization study.Sci. Rep.20201012127310.1038/s41598‑020‑78087‑733277538
    [Google Scholar]
  26. BrüningkS.C. RivensI. BoxC. OelfkeU. ter HaarG. 3D tumour spheroids for the prediction of the effects of radiation and hyperthermia treatments.Sci. Rep.2020101165310.1038/s41598‑020‑58569‑432015396
    [Google Scholar]
  27. GuntiS. HokeA.T.K. VuK.P. LondonN.R. Organoid and Spheroid tumor models: Techniques and applications.Cancers202113487410.3390/cancers1304087433669619
    [Google Scholar]
  28. JangY. JungH. JuJ.H. Chondrogenic differentiation induction of adipose-derived stem cells by centrifugal gravity.J. Vis. Exp.20171201205493428287507
    [Google Scholar]
  29. LeeN.H. BayaraaO. ZechuZ. KimH.S. Biomaterials-assisted spheroid engineering for regenerative therapy.BMB Rep.202154735636710.5483/BMBRep.2021.54.7.05934154700
    [Google Scholar]
  30. QueredaV. HouS. MadouxF. ScampaviaL. SpicerT.P. DuckettD.A. Cytotoxic three-dimensional-spheroid, high-throughput assay using patient-derived glioma stem cells.SLAS Discov. Adv. Life Sci.201823842849
    [Google Scholar]
  31. HalfterK. HoffmannO. DitschN. AhneM. ArnoldF. PaepkeS. GrabD. BauerfeindI. MayerB. Testing chemotherapy efficacy in HER2 negative breast cancer using patient-derived spheroids.J. Transl. Med.201614111210.1186/s12967‑016‑0855‑327142386
    [Google Scholar]
  32. JeppesenM. HagelG. GlenthojA. VainerB. IbsenP. HarlingH. ThastrupO. JørgensenL.N. ThastrupJ. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine.PLoS One2017129e018307410.1371/journal.pone.018307428877221
    [Google Scholar]
  33. Della CorteC.M. BarraG. CiaramellaV. Di LielloR. VicidominiG. ZappavignaS. LuceA. AbateM. FiorelliA. CaragliaM. SantiniM. MartinelliE. TroianiT. CiardielloF. MorgilloF. Antitumor activity of dual blockade of PD-L1 and MEK in NSCLC patients derived three-dimensional spheroid cultures.J. Exp. Clin. Cancer Res.201938125310.1186/s13046‑019‑1257‑131196138
    [Google Scholar]
  34. RaghavanS. MehtaP. WardM.R. BregenzerM.E. FleckE.M.A. TanL. McLeanK. BuckanovichR.J. MehtaG. Personalized medicine-based approach to model patterns of chemoresistance and tumor recurrence using ovarian cancer stem cell spheroids.Clin. Cancer Res.201723226934694510.1158/1078‑0432.CCR‑17‑013328814433
    [Google Scholar]
  35. Tomás-BortE. KielerM. SharmaS. CandidoJ.B. LoessnerD. 3D approaches to model the tumor microenvironment of pancreatic cancer.Theranostics202010115074508910.7150/thno.4244132308769
    [Google Scholar]
  36. LinxweilerJ. HammerM. MuhsS. KohnM. PryalukhinA. VeithC. BohleR.M. StöckleM. JunkerK. SaarM. Patient-derived, three-dimensional spheroid cultures provide a versatile translational model for the study of organ-confined prostate cancer.J. Cancer Res. Clin. Oncol.2019145355155910.1007/s00432‑018‑2803‑530474758
    [Google Scholar]
  37. LoY.H. KarlssonK. KuoC.J. Applications of organoids for cancer biology and precision medicine.Nat. Can.20201876177310.1038/s43018‑020‑0102‑y34142093
    [Google Scholar]
  38. DriehuisE. KretzschmarK. CleversH. Establishment of patient-derived cancer organoids for drug-screening applications.Nat. Protoc.202015103380340910.1038/s41596‑020‑0379‑432929210
    [Google Scholar]
  39. LiuC. QinT. HuangY. LiY. ChenG. SunC. Drug screening model meets cancer organoid technology.Transl. Oncol.2020131110084010.1016/j.tranon.2020.10084032822897
    [Google Scholar]
  40. PatelN.R. AryasomayajulaB. AbouzeidA.H. TorchilinV.P. Cancer cell spheroids for screening of chemotherapeutics and drug-delivery systems.Ther. Deliv.20156450952010.4155/tde.15.125996047
    [Google Scholar]
  41. TungY.C. HsiaoA.Y. AllenS.G. TorisawaY. HoM. TakayamaS. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.Analyst2011136347347810.1039/C0AN00609B20967331
    [Google Scholar]
  42. HsiaoA.Y. TungY.C. KuoC.H. MosadeghB. BedenisR. PientaK.J. TakayamaS. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates.Biomed. Microdev.201214231332310.1007/s10544‑011‑9608‑522057945
    [Google Scholar]
  43. KelmJ.M. TimminsN.E. BrownC.J. FusseneggerM. NielsenL.K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types.Biotechnol. Bioeng.200383217318010.1002/bit.1065512768623
    [Google Scholar]
  44. deRidderL. CornelissenM. de RidderD. Autologous spheroid culture: A screening tool for human brain tumour invasion.Crit. Rev. Oncol. Hematol.2000362-310712210.1016/S1040‑8428(00)00081‑011033301
    [Google Scholar]
  45. WartenbergM. DönmezF. LingF.C. AckerH. HeschelerJ. SauerH. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells.FASEB J.2001156995100511292660
    [Google Scholar]
  46. GlicklisR. MerchukJ.C. CohenS. Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions.Biotechnol. Bioeng.200486667268010.1002/bit.2008615137079
    [Google Scholar]
  47. NybergS.L. HardinJ. AmiotB. ArgikarU.A. RemmelR.P. RinaldoP. Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver.Liver Transpl.200511890191010.1002/lt.2044616035089
    [Google Scholar]
  48. CastañedaF. KinneR.K.H. Short exposure to millimolar concentrations of ethanol induces apoptotic cell death in multicellular HepG2 spheroids.J. Cancer Res. Clin. Oncol.2000126630531010.1007/s00432005034810870639
    [Google Scholar]
  49. GlicklisR. ShapiroL. AgbariaR. MerchukJ.C. CohenS. Hepatocyte behavior within three-dimensional porous alginate scaffolds.Biotechnol. Bioeng.200067334435310.1002/(SICI)1097‑0290(20000205)67:3<344::AID‑BIT11>3.0.CO;2‑210620265
    [Google Scholar]
  50. KhL. MaedaS. SaitoT. Long-term maintenance of liver-specific functions in three-dimensional culture of adult rat hepatocytes with a porous gelatin sponge support.Biotechnol. Appl. Biochem.1995211192710.1111/j.1470‑8744.1995.tb00325.x7536008
    [Google Scholar]
  51. PercheF. PatelN.R. TorchilinV.P. Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG–PE micelles in ovarian cancer cell spheroid model.J. Control. Release201216419510210.1016/j.jconrel.2012.09.00322974689
    [Google Scholar]
  52. LinR.Z. ChouL.F. ChienC.C.M. ChangH.Y. Dynamic analysis of hepatoma spheroid formation: Roles of E-cadherin and β1-integrin.Cell Tissue Res.2006324341142210.1007/s00441‑005‑0148‑216489443
    [Google Scholar]
  53. KinchM.S. An analysis of FDA-approved drugs for oncology.Drug Discov. Today201419121831183510.1016/j.drudis.2014.08.00725172803
    [Google Scholar]
  54. MacConaillL.E. GarciaE. ShivdasaniP. DucarM. AdusumilliR. BreneiserM. ByrneM. ChungL. ConneelyJ. CrosbyL. GarrawayL.A. GongX. HahnW.C. HattonC. KantoffP.W. KlukM. KuoF. JiaY. JoshiR. LongtineJ. ManningA. PalescandoloE. SharafN. ShollL. van HummelenP. WadeJ. WollinsonB.M. ZepfD. RollinsB.J. LindemanN.I. Prospective enterprise-level molecular genotyping of a cohort of cancer patients.J. Mol. Diagn.201416666067210.1016/j.jmoldx.2014.06.00425157968
    [Google Scholar]
  55. ChengD.T. MitchellT.N. ZehirA. ShahR.H. BenayedR. SyedA. ChandramohanR. LiuZ.Y. WonH.H. ScottS.N. BrannonA.R. O’ReillyC. SadowskaJ. CasanovaJ. YannesA. HechtmanJ.F. YaoJ. SongW. RossD.S. OultacheA. DoganS. BorsuL. HameedM. NafaK. ArcilaM.E. LadanyiM. BergerM.F. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology.J. Mol. Diagn.201517325126410.1016/j.jmoldx.2014.12.00625801821
    [Google Scholar]
  56. HorvathP. AulnerN. BickleM. DaviesA.M. NeryE.D. EbnerD. MontoyaM.C. ÖstlingP. PietiäinenV. PriceL.S. ShorteS.L. TurcattiG. von SchantzC. CarragherN.O. Screening out irrelevant cell-based models of disease.Nat. Rev. Drug Discov.2016151175176910.1038/nrd.2016.17527616293
    [Google Scholar]
  57. MittlerF. ObeïdP. RulinaA.V. HaguetV. GidrolX. BalakirevM.Y. High-content monitoring of drug effects in a 3D spheroid model.Front. Oncol.2017729310.3389/fonc.2017.0029329322028
    [Google Scholar]
  58. HirschhaeuserF. MenneH. DittfeldC. WestJ. Mueller-KlieserW. Kunz-SchughartL.A. Multicellular tumor spheroids: An underestimated tool is catching up again.J. Biotechnol.2010148131510.1016/j.jbiotec.2010.01.01220097238
    [Google Scholar]
  59. WeiswaldL.B. BelletD. Dangles-MarieV. Spherical cancer models in tumor biology.Neoplasia201517111510.1016/j.neo.2014.12.00425622895
    [Google Scholar]
  60. LancasterM.A. KnoblichJ.A. Organogenesis in a dish: Modeling development and disease using organoid technologies.Science20143456194124712510.1126/science.124712525035496
    [Google Scholar]
  61. BredenoordA.L. CleversH. KnoblichJ.A. Human tissues in a dish: The research and ethical implications of organoid technology.Science20173556322eaaf941410.1126/science.aaf941428104841
    [Google Scholar]
  62. FatehullahA. TanS.H. BarkerN. Organoids as an in vitro model of human development and disease.Nat. Cell Biol.201618324625410.1038/ncb331226911908
    [Google Scholar]
  63. EschE.W. BahinskiA. HuhD. Organs-on-chips at the frontiers of drug discovery.Nat. Rev. Drug Discov.201514424826010.1038/nrd453925792263
    [Google Scholar]
  64. SkardalA. ShupeT. AtalaA. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling.Drug Discov. Today20162191399141110.1016/j.drudis.2016.07.00327422270
    [Google Scholar]
  65. PatiF. GanteliusJ. SvahnH.A. 3D bioprinting of tissue/organ models.Angew. Chem. Int. Ed.201655154650466510.1002/anie.20150506226895542
    [Google Scholar]
  66. NathS. DeviG.R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model.Pharmacol. Ther.20161639410810.1016/j.pharmthera.2016.03.01327063403
    [Google Scholar]
  67. JangM. KohI. LeeS.J. CheongJ.H. KimP. Droplet-based microtumor model to assess cell-ECM interactions and drug resistance of gastric cancer cells.Sci. Rep.2017714154110.1038/srep4154128128310
    [Google Scholar]
  68. LeeK.H. KimT.H. Recent advances in multicellular tumor spheroid generation for drug screening.Biosensors2021111144510.3390/bios1111044534821661
    [Google Scholar]
  69. BosnakovskiD. MizunoM. KimG. IshiguroT. OkumuraM. IwanagaT. KadosawaT. FujinagaT. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system.Exp. Hematol.200432550250910.1016/j.exphem.2004.02.00915145219
    [Google Scholar]
  70. ZhangL. SuP. XuC. YangJ. YuW. HuangD. Chondrogenic differentiation of human mesenchymal stem cells: A comparison between micromass and pellet culture systems.Biotechnol. Lett.20103291339134610.1007/s10529‑010‑0293‑x20464452
    [Google Scholar]
  71. KaurG. EvansD.M. TeicherB.A. CoussensN.P. Complex tumor spheroids, a tissue-mimicking tumor model, for drug discovery and precision medicine.SLAS Discov.202126101298131410.1177/2472555221103836234772287
    [Google Scholar]
  72. Ben-DavidU. HaG. TsengY.Y. GreenwaldN.F. OhC. ShihJ. McFarlandJ.M. WongB. BoehmJ.S. BeroukhimR. GolubT.R. Patient-derived xenografts undergo mouse-specific tumor evolution.Nat. Genet.201749111567157510.1038/ng.396728991255
    [Google Scholar]
  73. Ben-DavidU. SiranosianB. HaG. TangH. OrenY. HinoharaK. StrathdeeC.A. DempsterJ. LyonsN.J. BurnsR. NagA. KugenerG. CiminiB. TsvetkovP. MaruvkaY.E. O’RourkeR. GarrityA. TubelliA.A. BandopadhayayP. TsherniakA. VazquezF. WongB. BirgerC. GhandiM. ThornerA.R. BittkerJ.A. MeyersonM. GetzG. BeroukhimR. GolubT.R. Genetic and transcriptional evolution alters cancer cell line drug response.Nature2018560771832533010.1038/s41586‑018‑0409‑330089904
    [Google Scholar]
  74. GilazievaZ. PonomarevA. RutlandC. RizvanovA. SolovyevaV. Promising applications of tumor spheroids and organoids for personalized medicine.Cancers20201210272710.3390/cancers1210272732977530
    [Google Scholar]
  75. VinciM. GowanS. BoxallF. PattersonL. ZimmermannM. CourtW. LomasC. MendiolaM. HardissonD. EcclesS.A. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation.BMC Biol.20121012910.1186/1741‑7007‑10‑2922439642
    [Google Scholar]
  76. BaekN. SeoO.W. KimM. HulmeJ. AnS.S.A. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time.OncoTargets Ther.201697207721810.2147/OTT.S11256627920558
    [Google Scholar]
  77. ZanoniM. PiccininiF. ArientiC. ZamagniA. SantiS. PolicoR. BevilacquaA. TeseiA. 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained.Sci. Rep.2016611910310.1038/srep1910326752500
    [Google Scholar]
  78. VinciM. BoxC. EcclesS.A. Three-dimensional (3D) tumor spheroid invasion assay.J. Vis. Exp.201599e5268625993495
    [Google Scholar]
  79. WeiswaldL.B. GuinebretièreJ.M. RichonS. BelletD. SaubaméaB. Dangles-MarieV. In situ protein expression in tumour spheres: Development of an immunostaining protocol for confocal microscopy.BMC Cancer201010110610.1186/1471‑2407‑10‑10620307308
    [Google Scholar]
  80. DufauI. FrongiaC. SicardF. DedieuL. CordelierP. AusseilF. DucommunB. ValetteA. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: Application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer.BMC Cancer20121211510.1186/1471‑2407‑12‑1522244109
    [Google Scholar]
  81. AnastasovN. HöfigI. RadulovićV. StröbelS. SalomonM. LichtenbergJ. RothenaignerI. HadianK. KelmJ.M. ThirionC. AtkinsonM.J. A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment.BMC Cancer201515146610.1186/s12885‑015‑1481‑926059545
    [Google Scholar]
  82. MartinezN.J. TitusS.A. WagnerA.K. SimeonovA. High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models.Expert Opin. Drug Discov.201510121347136110.1517/17460441.2015.109181426394277
    [Google Scholar]
  83. SmyrekI. StelzerE.H.K. Quantitative three-dimensional evaluation of immunofluorescence staining for large whole mount spheroids with light sheet microscopy.Biomed. Opt. Express20178248449910.1364/BOE.8.00048428270962
    [Google Scholar]
  84. AckerH. CarlssonJ. Mueller-KlieserW. SutherlandR.M. Comparative pO2 measurements in cell spheroids cultured with different techniques.Br. J. Cancer198756332532710.1038/bjc.1987.1973311111
    [Google Scholar]
  85. Alvarez-PérezJ. BallesterosP. CerdánS. Microscopic images of intraspheroidal pH by 1H magnetic resonance chemical shift imaging of pH sensitive indicators.MAGMA200518629330110.1007/s10334‑005‑0013‑z16328228
    [Google Scholar]
  86. MellorH.R. FergusonD.J.P. CallaghanR. A model of quiescent tumour microregions for evaluating multicellular resistance to chemotherapeutic drugs.Br. J. Cancer200593330230910.1038/sj.bjc.660271016052217
    [Google Scholar]
  87. TakagiA. WatanabeM. IshiiY. MoritaJ. HirokawaY. MatsuzakiT. ShiraishiT. Three-dimensional cellular spheroid formation provides human prostate tumor cells with tissue-like features.Anticancer Res.2007271A455317352215
    [Google Scholar]
  88. De Witt HamerP.C. Van TilborgA A G. EijkP.P. SminiaP. TroostD. Van NoordenC.J.F. YlstraB. LeenstraS. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids.Oncogene200827142091209610.1038/sj.onc.121085017934519
    [Google Scholar]
  89. KondoJ. EndoH. OkuyamaH. IshikawaO. IishiH. TsujiiM. OhueM. InoueM. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer.Proc. Natl. Acad. Sci.2011108156235624010.1073/pnas.101593810821444794
    [Google Scholar]
  90. SaraivaD.P. MatiasA.T. BragaS. JacintoA. CabralM.G. Establishment of a 3D co-culture with MDA-MB-231 breast cancer cell line and patient-derived immune cells for application in the development of immunotherapies.Front. Oncol.202010154310.3389/fonc.2020.0154332974189
    [Google Scholar]
  91. WangZ. TangY. TanY. WeiQ. YuW. Cancer-associated fibroblasts in radiotherapy: Challenges and new opportunities.Cell Commun. Signal.20191714710.1186/s12964‑019‑0362‑231101063
    [Google Scholar]
  92. Jahanban-EsfahlanR. SeidiK. Banimohamad-ShotorbaniB. Jahanban-EsfahlanA. YousefiB. Combination of nanotechnology with vascular targeting agents for effective cancer therapy.J. Cell. Physiol.201823342982299210.1002/jcp.2605128608554
    [Google Scholar]
  93. Jahanban-EsfahlanR. SeidiK. ZarghamiN. Tumor vascular infarction: prospects and challenges.Int. J. Hematol.2017105324425610.1007/s12185‑016‑2171‑328044258
    [Google Scholar]
  94. ArnethB. Tumor microenvironment.Medicina20195611510.3390/medicina5601001531906017
    [Google Scholar]
  95. BaeJ. HanS. ParkS. Recent advances in 3D bioprinted tumor microenvironment.Biochip J.202014213714710.1007/s13206‑020‑4201‑8
    [Google Scholar]
  96. MillardM. YakavetsI. ZorinV. KulmukhamedovaA. MarchalS. BezdetnayaL. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening.Int. J. Nanomedicine2017127993800710.2147/IJN.S14692729184400
    [Google Scholar]
  97. CourauT. BonnereauJ. ChicoteauJ. BottoisH. RemarkR. Assante MirandaL. ToubertA. BleryM. AparicioT. AllezM. Le BourhisL. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment.J. Immunother. Cancer2019717410.1186/s40425‑019‑0553‑930871626
    [Google Scholar]
  98. YuanT. GaoD. LiS. JiangY. Co-culture of tumor spheroids and monocytes in a collagen matrix-embedded microfluidic device to study the migration of breast cancer cells.Chin. Chem. Lett.201930233133610.1016/j.cclet.2018.07.013
    [Google Scholar]
  99. HirtC. PapadimitropoulosA. MeleV. MuraroM.G. MengusC. IezziG. TerraccianoL. MartinI. SpagnoliG.C. “In vitro” 3D models of tumor-immune system interaction.Adv. Drug Deliv. Rev.201479-8014515410.1016/j.addr.2014.05.00324819215
    [Google Scholar]
  100. KlössS. ChambronN. GardlowskiT. WeilS. KochJ. EsserR. Pogge von StrandmannE. MorganM.A. ArsenievL. SeitzO. KöhlU. Cetuximab reconstitutes pro-inflammatory cytokine secretions and tumor-infiltrating capabilities of sMICA-inhibited NK cells in HNSCC tumor spheroids.Front. Immunol.2015654310.3389/fimmu.2015.0054326579120
    [Google Scholar]
  101. GiannattasioA. WeilS. KloessS. AnsariN. StelzerE.H.K. CerwenkaA. SteinleA. KoehlU. KochJ. Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids.BMC Cancer201515135110.1186/s12885‑015‑1321‑y25933805
    [Google Scholar]
  102. Hoogstad-van EvertJ.S. CanyJ. van den BrandD. OudenampsenM. BrockR. TorensmaR. BekkersR.L. JansenJ.H. MassugerL.F. DolstraH. Umbilical cord blood CD34 + progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rg null mice.OncoImmunology201768e132063010.1080/2162402X.2017.132063028919991
    [Google Scholar]
  103. LanuzaP.M. ViguerasA. OlivanS. PratsA.C. CostasS. LlamazaresG. Sanchez-MartinezD. AyusoJ.M. FernandezL. OchoaI. PardoJ. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression.OncoImmunology201874e139512310.1080/2162402X.2017.139512329632716
    [Google Scholar]
  104. ShermanH. GitschierH.J. RossiA.E. A novel three-dimensional immune oncology model for high-throughput testing of tumoricidal activity.Front. Immunol.2018985710.3389/fimmu.2018.0085729740450
    [Google Scholar]
  105. ChangC.H. WangY. LiR. RossiD.L. LiuD. RossiE.A. CardilloT.M. GoldenbergD.M. Combination therapy with bispecific antibodies and PD-1 blockade enhances the antitumor potency of T cells.Cancer Res.201777195384539410.1158/0008‑5472.CAN‑16‑343128819027
    [Google Scholar]
  106. KoeckS. KernJ. ZwierzinaM. GamerithG. LorenzE. SopperS. ZwierzinaH. AmannA. The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3 + CD8 + tumor infiltrating lymphocyte subpopulations.OncoImmunology201766e132361710.1080/2162402X.2017.132361728680763
    [Google Scholar]
  107. ZboralskiD. HoehligK. EulbergD. FrömmingA. VaterA. Increasing tumor infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade.Cancer Immunol. Res.201751195095610.1158/2326‑6066.CIR‑16‑030328963140
    [Google Scholar]
  108. DengJ. WangE.S. JenkinsR.W. LiS. DriesR. YatesK. ChhabraS. HuangW. LiuH. ArefA.R. IvanovaE. PaweletzC.P. BowdenM. ZhouC.W. Herter-SprieG.S. SorrentinoJ.A. BisiJ.E. LizotteP.H. MerlinoA.A. QuinnM.M. BufeL.E. YangA. ZhangY. ZhangH. GaoP. ChenT. CavanaughM.E. RodeA.J. HainesE. RobertsP.J. StrumJ.C. RichardsW.G. LorchJ.H. ParangiS. GundaV. BolandG.M. BuenoR. PalakurthiS. FreemanG.J. RitzJ. HainingW.N. SharplessN.E. ArthanariH. ShapiroG.I. BarbieD.A. GrayN.S. WongK.K. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation.Cancer Discov.20188221623310.1158/2159‑8290.CD‑17‑091529101163
    [Google Scholar]
  109. JenkinsR.W. ArefA.R. LizotteP.H. IvanovaE. StinsonS. ZhouC.W. BowdenM. DengJ. LiuH. MiaoD. HeM.X. WalkerW. ZhangG. TianT. ChengC. WeiZ. PalakurthiS. BittingerM. VitzthumH. KimJ.W. MerlinoA. QuinnM. VenkataramaniC. KaplanJ.A. PortellA. GokhaleP.C. PhillipsB. SmartA. RotemA. JonesR.E. KeoghL. AnguianoM. StapletonL. JiaZ. Barzily-RokniM. CañadasI. ThaiT.C. HammondM.R. VlahosR. WangE.S. ZhangH. LiS. HannaG.J. HuangW. HoangM.P. PirisA. ElianeJ.P. Stemmer-RachamimovA.O. CameronL. SuM.J. ShahP. IzarB. ThakuriaM. LeBoeufN.R. RabinowitsG. GundaV. ParangiS. ClearyJ.M. MillerB.C. KitajimaS. ThummalapalliR. MiaoB. BarbieT.U. SivathanuV. WongJ. RichardsW.G. BuenoR. YoonC.H. MiretJ. HerlynM. GarrawayL.A. Van AllenE.M. FreemanG.J. KirschmeierP.T. LorchJ.H. OttP.A. HodiF.S. FlahertyK.T. KammR.D. BolandG.M. WongK.K. DornanD. PaweletzC.P. BarbieD.A. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids.Cancer Discov.20188219621510.1158/2159‑8290.CD‑17‑083329101162
    [Google Scholar]
  110. YukiK. ChengN. NakanoM. KuoC.J. Organoid models of tumor immunology.Trends Immunol.202041865266410.1016/j.it.2020.06.01032654925
    [Google Scholar]
  111. LovittC. ShelperT. AveryV. Advanced cell culture techniques for cancer drug discovery.Biology20143234536710.3390/biology302034524887773
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096285910240206044830
Loading
/content/journals/ccdt/10.2174/0115680096285910240206044830
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 3D culture; Cancer; chemotherapy; drug screening; precision medicine; spheroid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test