Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Introduction

This study delved to understand the role of Kinase Insert Domain Receptor (KDR) and its associated miRNAs in renal cell carcinoma through an extensive computational analysis. The potential of our findings to guide future research in this area is significant.

Methods

Our methods, which included the use of UALCAN and GEPIA2 databases, as well as miRDB, MirDIP, miRNet v2.0, miRTargetLink, MiEAA v2.1, TarBase v8.0, INTERNET, and miRTarBase, were instrumental in identifying the regulation of miRNA associated with KDR expression. The predicted miRNA was validated with the TCGA-KIRC patients’ samples by implementing CancerMIRNome. The TargetScanHuman v8.0 was implemented to identify the associations between human miRNAs and KDR. A Patch Dock server analyzed the interactions between hsa-miR-200c-3p and KDR.

Results

The KDR expression rate was investigated in the Kidney Renal Cell Carcinoma (KIRC) samples, and adjacent normal tissues revealed that the expression rate was significantly higher than the normal samples, which was evident from the strong statistical significance ( = 1.63e-12). Likely, the KDR expression rate was estimated as high at tumor grade 1 and gradually decreased till the metastasis grade, reducing the survival rate of the KIRC patients. To identify these signals early, we predicted a miRNA that could alter the expression of KDR. Furthermore, we uncovered the potential associations between miR-200c-3p expressions by regulating KDR towards the progression of KIRC.

Discussion

Upon examining the outcome, it became evident that miR-200c-3p was significantly downregulated in KIRC compared to the normal samples. Moreover, the negative correlation was obtained for hsa-miR-200c-3p (R = - 0.276) along with the KDR expression describing that the increased rate of hsa-miR-200c-3p might reduce the KDR expression rate, which may suppress the KIRC initiation or progression.

Conclusion

The analysis indicated that the significant increase in KDR expression during the initiation of KIRC could serve as an early diagnostic marker. Moreover, KDR could be utilized to identify advancements in KIRC stages. Additionally, hsa-miR-200c-3p was identified as a potential regulator capable of downregulating and upregulating KDR expression among the 24 miRNAs screened. This finding holds promise for future research endeavors. Concurrent administration of the FDA-approved 5-fluorouracil with KIRC drugs, such as sorafenib, zidovudine, and everolimus, may have the potential to enhance the therapeutic efficacy in downregulating hsa-miR-200c-3p. However, further studies are imperative to validate these findings and gain a comprehensive understanding of the intricate regulatory interplay involving hsa-miR-200c-3p, KDR, 5-fluorouracil, and other FDA-approved drugs for the treatment of KIRC. This will facilitate the identification of KIRC stage progression and its underlying preventative mechanisms.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096321287240826065718
2024-09-16
2025-04-15
Loading full text...

Full text loading...

References

  1. HarrisonH. ThompsonR.E. LinZ. RossiS.H. StewartG.D. GriffinS.J. Usher-SmithJ.A. Risk prediction models for kidney cancer: A systematic review.Eur. Urol. Focus2021761380139010.1016/j.euf.2020.06.024 32680829
    [Google Scholar]
  2. LiZ. XuH. YuL. WangJ. MengQ. MeiH. CaiZ. ChenW. HuangW. Patient-derived renal cell carcinoma organoids for personalized cancer therapy.Clin. Transl. Med.2022127e97010.1002/ctm2.970 35802820
    [Google Scholar]
  3. LeeK.H. KimB.C. JeongS.H. JeongC.W. KuJ.H. KwakC. KimH.H. Histone demethylase LSD1 regulates kidney cancer progression by modulating androgen receptor activity.Int. J. Mol. Sci.20202117608910.3390/ijms21176089 32847068
    [Google Scholar]
  4. BrownJ.E. RoyleK.L. GregoryW. RalphC. MaraveyasA. DinO. EisenT. NathanP. PowlesT. GriffithsR. JonesR. VasudevN. WheaterM. HamidA. WaddellT. McMeneminR. PatelP. LarkinJ. FaustG. MartinA. SwainJ. BestallJ. McCabeC. MeadsD. GohV. Min WahT. BrownJ. HewisonJ. SelbyP. CollinsonF. CarserJ. SrinivasanG. ThistlewaiteF. AzzabiA. BeresfordM. FarrugiaD. DecatrisM. ThomasC. GaleJ. McAleerJ. ClaytonA. BoletiE. GeldartT. SundarS. LesterJ. PalaniappanN. HingoraniM. RehmanK. KhanM. SarwarN. GrahamJ. ThomsonA. SrihariN. SheehanD. SrinivasanR. KhanO. Jane WorldingA.S. BoussiosS. StuartN. MacDonald-SmithC. DanwataF. McLarenD. SundaramurthyA. LydonA. BeesleyS. LeesK. VarugheseM. GrayE. ScottA. BaxterM. MullardA. InnominatoP. KapurG. KumarA. CharnleyN. ManettaC. ChakrabortiP. DasP. RudmanS. TaylorH. MikropoulosC. HighleyM. MuthukumarD. ZarkarA. VergisR. SriprasadS. BrulinskiP. ClarkeA. OsbourneR. HarveyM. DegaR. SparrowG. BarthakurU. BeaumontE. ManettaC. MichaelA. PorfiriE. AzamF. KodavtigantiR. Temporary treatment cessation versus continuation of first-line tyrosine kinase inhibitor in patients with advanced clear cell renal cell carcinoma (STAR): An open-label, non-inferiority, randomised, controlled, phase 2/3 trial.Lancet Oncol.202324321322710.1016/S1470‑2045(22)00793‑8 36796394
    [Google Scholar]
  5. MysliwiecP. PawlakK. BandurskiR. KedraB. Soluble angiogenesis markers in gastric tumor patients.Folia Histochem. Cytobiol.2009471818610.2478/v10042‑009‑0004‑4 19419943
    [Google Scholar]
  6. TangR. ChaiW.M. YangG.Y. XieH. ChenK.M. X-ray phase contrast imaging of cell isolation with super-paramagnetic microbeads.PLoS One201279e4559710.1371/journal.pone.0045597 23029126
    [Google Scholar]
  7. LouY. QiuW. WuZ. WangQ. QiuY. ZengS. Mass spectral analysis of the multikinase inhibitor BZG and its metabolites and analysis of their binding to vascular endothelial growth factor receptor-2.Oncotarget2017818299512996210.18632/oncotarget.16264 28415783
    [Google Scholar]
  8. BernatchezP.N. AllenB.G. GélinasD.S. GuillemetteG. SiroisM.G. Regulation of VEGF-induced endothelial cell PAF synthesis: Role of p42/44 MAPK, p38 MAPK and PI3K pathways.Br. J. Pharmacol.200113461253126210.1038/sj.bjp.0704367 11704645
    [Google Scholar]
  9. ChuaiY. RizzutoI. ZhangX. LiY. DaiG. OtterS.J. BharathanR. StewartA. WangA. Vascular endothelial growth factor (VEGF) targeting therapy for persistent, recurrent, or metastatic cervical cancer.Cochrane Libr.202120213CD01334810.1002/14651858.CD013348.pub2 33661538
    [Google Scholar]
  10. SantarpiaL. LippmanS.M. El-NaggarA.K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy.Expert Opin. Ther. Targets201216110311910.1517/14728222.2011.645805 22239440
    [Google Scholar]
  11. FontanellaC. OngaroE. BolzonelloS. GuardascioneM. FasolaG. AprileG. Clinical advances in the development of novel VEGFR2 inhibitors.Ann. Transl. Med.2014212123 25568876
    [Google Scholar]
  12. GenetG. BoyéK. MathivetT. OlaR. ZhangF. DubracA. LiJ. GenetN. Henrique GeraldoL. BenedettiL. KünzelS. Pibouin-FragnerL. ThomasJ.L. EichmannA. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis.Nat. Commun.2019101235010.1038/s41467‑019‑10359‑x 31138815
    [Google Scholar]
  13. ChakrabortyS. BalanM. SabarwalA. ChoueiriT.K. PalS. Metabolic reprogramming in renal cancer: Events of a metabolic disease.Biochim. Biophys. Acta Rev. Cancer20211876118855910.1016/j.bbcan.2021.188559 33965513
    [Google Scholar]
  14. De CaterinaR. RendaG. SangiuoloR. AttenaE. Di LecceL. RomeoF. Management of thromboembolic risk in patients with atrial fibrillation in Italy: Eseline data from the PREFER in AF European Registry.G. Ital. Cardiol. (Rome)20141529910910.1714/1424.15779
    [Google Scholar]
  15. SaesL. EskensF.A.L.M. Tivozanib: A new treatment option for renal cell carcinoma.Drugs Today (Barc)2017531160961810.1358/dot.2017.53.11.2724804 29451277
    [Google Scholar]
  16. ChawlaP.A. PassiI. BillowriaK. KumarB. Tivozanib: A new hope for treating renal cell carcinoma.Anticancer. Agents Med. Chem.202323556257010.2174/1871520622666220617103126 35718972
    [Google Scholar]
  17. Millet-BoureimaC. HeS. LeT.B.U. GamberiC. Modeling neoplastic growth in renal cell carcinoma and polycystic kidney disease.Int. J. Mol. Sci.2021228391810.3390/ijms22083918 33920158
    [Google Scholar]
  18. ZhangL. CaoH. GuG. HouD. YouY. LiX. ChenY. JiaoG. Exosomal MiR-199a-5p Inhibits tumorigenesis and angiogenesis by targeting VEGFA in osteosarcoma.Front. Oncol.20221288455910.3389/fonc.2022.884559 35651811
    [Google Scholar]
  19. BoussiosS. DevoP. GoodallI.C.A. SirlantzisK. GhoseA. ShindeS.D. PapadopoulosV. SanchezE. RassyE. OvsepianS.V. Exosomes in the diagnosis and treatment of renal cell cancer.Int. J. Mol. Sci.202324181435610.3390/ijms241814356 37762660
    [Google Scholar]
  20. AnandS. ChereshD.A. MicroRNA-mediated regulation of the angiogenic switch.Curr. Opin. Hematol.201118317117610.1097/MOH.0b013e328345a180 21423013
    [Google Scholar]
  21. LinL. HuX. LuL. DaiJ. LinN. WangR. XieZ. ChenX. MicroRNA expression profiles in familial hypertrophic cardiomyopathy with myosin-binding protein C3 (MYBPC3) gene mutations.BMC Cardiovasc. Disord.202222127810.1186/s12872‑022‑02714‑6 35717150
    [Google Scholar]
  22. LiM. LiJ. LiuL. LiW. YangY. YuanJ. MicroRNA in human glioma.Cancers (Basel)2013541306133110.3390/cancers5041306 24202447
    [Google Scholar]
  23. LouW. LiuJ. GaoY. ZhongG. ChenD. ShenJ. BaoC. XuL. PanJ. ChengJ. DingB. FanW. MicroRNAs in cancer metastasis and angiogenesis.Oncotarget201787011578711580210.18632/oncotarget.23115 29383201
    [Google Scholar]
  24. WangY. WangL. ChenC. ChuX. New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications.Mol. Cancer20181712210.1186/s12943‑018‑0766‑4 29415727
    [Google Scholar]
  25. SavaliyaM. SuratiD. SuratiR. PadmaniS. BoussiosS. Posterior reversible encephalopathy syndrome after pazopanib therapy.Diseases20231127610.3390/diseases11020076 37366864
    [Google Scholar]
  26. ChandrashekarD.S. KarthikeyanS.K. KorlaP.K. PatelH. ShovonA.R. AtharM. NettoG.J. QinZ.S. KumarS. ManneU. CreightonC.J. VaramballyS. UALCAN: An update to the integrated cancer data analysis platform.Neoplasia202225182710.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  27. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz430 31114875
    [Google Scholar]
  28. ChenY. WangX. miRDB: An online database for prediction of functional microRNA targets.Nucleic Acids Res.202048D1D127D13110.1093/nar/gkz757 31504780
    [Google Scholar]
  29. HauschildA.C. PastrelloC. EkaputeriG.K.A. Bethune-WaddellD. AbovskyM. AhmedZ. KotlyarM. LuR. JurisicaI. MirDIP 5.2: Tissue context annotation and novel microRNA curation.Nucleic Acids Res.202351D1D217D22510.1093/nar/gkac1070 36453996
    [Google Scholar]
  30. ChangL. ZhouG. SoufanO. XiaJ. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology.Nucleic Acids Res.202048W1W244W25110.1093/nar/gkaa467 32484539
    [Google Scholar]
  31. KernF. Aparicio-PuertaE. LiY. FehlmannT. KehlT. WagnerV. RayK. LudwigN. LenhofH.P. MeeseE. KellerA. miRTargetLink 2.0—interactive miRNA target gene and target pathway networks.Nucleic Acids Res.202149W1W409W41610.1093/nar/gkab297 34009375
    [Google Scholar]
  32. Aparicio-PuertaE. HirschP. SchmartzG.P. KernF. FehlmannT. KellerA. miEAA 2023: Updates, new functional microRNA sets and improved enrichment visualizations.Nucleic Acids Res.202351W1W319W32510.1093/nar/gkad392 37177999
    [Google Scholar]
  33. LicursiV. ConteF. FisconG. PaciP. MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis.BMC Bioinformatics201920154510.1186/s12859‑019‑3105‑x 31684860
    [Google Scholar]
  34. LiR. QuH. WangS. ChaterJ.M. WangX. CuiY. YuL. ZhouR. JiaQ. TrabandR. WangM. XieW. YuanD. ZhuJ. ZhongW.D. JiaZ. CancerMIRNome: An interactive analysis and visualization database for miRNome profiles of human cancer.Nucleic Acids Res.202250D1D1139D114610.1093/nar/gkab784 34500460
    [Google Scholar]
  35. GiacomelliC. JungJ. WachterA. IbingS. WillR. UhlmannS. MannspergerH. SahinÖ. YardenY. BeißbarthT. KorfU. KörnerC. WiemannS. Coordinated regulation of WNT/β-catenin, c-Met, and integrin signalling pathways by miR-193b controls triple negative breast cancer metastatic traits.BMC Cancer2021211129610.1186/s12885‑021‑08955‑6 34863149
    [Google Scholar]
  36. McGearySE. LinKS. ShiCY. PhamTM. BisariaN. KelleyGM. BartelDP. The biochemical basis of microRNA targeting efficacy.Science2019366eaav174110.1126/science.aav174
    [Google Scholar]
  37. HofackerI.L. Vienna RNA secondary structure server.Nucleic Acids Res.200331133429343110.1093/nar/gkg599 12824340
    [Google Scholar]
  38. BiesiadaM. PurzyckaK.J. SzachniukM. BlazewiczJ. AdamiakR.W. Automated RNA 3D structure prediction with RNA composer.Methods Mol. Biol.2016149019921510.1007/978‑1‑4939‑6433‑8_13 27665601
    [Google Scholar]
  39. IyerS. ScotneyP.D. NashA.D. Ravi AcharyaK. Crystal structure of human vascular endothelial growth factor-B: Identification of amino acids important for receptor binding.J. Mol. Biol.20063591768510.1016/j.jmb.2006.03.002 16616187
    [Google Scholar]
  40. YuF. LiB. SunJ. QiJ. De WildeR.L. Torres-de la RocheL.A. LiC. AhmadS. ShiW. LiX. ChenZ. PSRR: A web server for predicting the regulation of miRNAs expression by small molecules.Front. Mol. Biosci.2022981729410.3389/fmolb.2022.817294 35386297
    [Google Scholar]
  41. FuchsB. BirtA. MoellhoffN. KuhlmannC. GiuntaR. WiggenhauserP.S. The use of commercial fibrin glue in dermal replacement material reduces angiogenic and lymphangiogenic gene and protein expression in vitro.J. Biomater. Appl.202337101858187310.1177/08853282231171681 37082911
    [Google Scholar]
  42. ThalgottJ.H. Dos-Santos-LuisD. HosmanA.E. MartinS. LamandéN. BracquartD. SrunS. GalarisG. de BoerH.C. Tual-ChalotS. KroonS. ArthurH.M. CaoY. SnijderR.J. DischF. MagerJ.J. RabelinkT.J. MummeryC.L. RaymondK. LebrinF. Decreased expression of vascular endothelial growth factor receptor 1 contributes to the pathogenesis of hereditary hemorrhagic telangiectasia type 2.Circulation2018138232698271210.1161/CIRCULATIONAHA.117.033062 30571259
    [Google Scholar]
  43. KrispinS. StratmanA.N. MelickC.H. StanR.V. MalinvernoM. GleklenJ. CastranovaD. DejanaE. WeinsteinB.M. Growth differentiation factor 6 promotes vascular stability by restraining vascular endothelial growth factor signaling.Arterioscler. Thromb. Vasc. Biol.201838235336210.1161/ATVBAHA.117.309571 29284606
    [Google Scholar]
  44. MontemagnoC. PagèsG. Resistance to anti-angiogenic therapies: A mechanism depending on the time of exposure to the drugs.Front. Cell Dev. Biol.2020858410.3389/fcell.2020.00584 32775327
    [Google Scholar]
  45. GehmeyrJ. MaghnoujA. TjadenJ. VorgerdM. HahnS. MatschkeV. TheisV. TheissC. Disabling VEGF-response of purkinje cells by downregulation of KDR via miRNA-204-5p.Int. J. Mol. Sci.2021224217310.3390/ijms22042173 33671638
    [Google Scholar]
  46. NiuG. ChenX. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy.Curr. Drug Targets20101181000101710.2174/138945010791591395 20426765
    [Google Scholar]
  47. Mohammad RezaeiF. HashemzadehS. Ravanbakhsh GavganiR. Hosseinpour FeiziM. PouladiN. Samadi KafilH. RostamizadehL. Kholghi OskooeiV. TaheriM. SakhiniaE. Dysregulated KDR and FLT1 gene expression in colorectal cancer patients.Rep. Biochem. Mol. Biol.201983244252 32274396
    [Google Scholar]
  48. HuangM. ZhangT. YaoZ.Y. XingC. WuQ. LiuY.W. XingX.L. MicroRNA related prognosis biomarkers from high throughput sequencing data of kidney renal clear cell carcinoma.BMC Med. Genomics20211417210.1186/s12920‑021‑00932‑z 33750388
    [Google Scholar]
  49. ZhangY. MaS. ZhangJ. LouL. LiuW. GaoC. MiaoL. SunF. ChenW. CaoX. WeiJ. MicroRNA-142-3p promotes renal cell carcinoma progression by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways.Sci. Rep.2023131593510.1038/s41598‑022‑21447‑2 37045834
    [Google Scholar]
  50. DengL. WangP. QuZ. LiuN. The construction and analysis of cerna network and immune infiltration in kidney renal clear cell carcinoma.Front. Genet.20211266761010.3389/fgene.2021.667610 34567057
    [Google Scholar]
  51. YamadaY. AraiT. KojimaS. SugawaraS. KatoM. OkatoA. YamazakiK. NayaY. IchikawaT. SekiN. Anti-tumor roles of both strands of the miR-455 duplex: Their targets SKA1 and SKA3 are involved in the pathogenesis of renal cell carcinoma.Oncotarget2018942266382665810.18632/oncotarget.25410 29928475
    [Google Scholar]
  52. LavoroA. FalzoneL. TomaselloB. ContiG.N. LibraM. CandidoS. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity.Front. Pharmacol.202314119126210.3389/fphar.2023.1191262 37397501
    [Google Scholar]
  53. FranczykB. Gluba-BrzózkaA. OlszewskiR. ParolczykM. Rysz-Górzyńska, M.; Rysz, J. miRNA biomarkers in renal disease.Int. Urol. Nephrol.202254357558810.1007/s11255‑021‑02922‑7 34228259
    [Google Scholar]
  54. Vilming ElgaaenB. OlstadO.K. HaugK.B.F. BruslettoB. SandvikL. StaffA.C. GautvikK.M. DavidsonB. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker.BMC Cancer20141418010.1186/1471‑2407‑14‑80 24512620
    [Google Scholar]
  55. ChangJ.T.H. WangF. ChapinW. HuangR.S. Identification of microRNAs as breast cancer prognosis markers through the cancer genome atlas.PLoS One20161112e016828410.1371/journal.pone.0168284 27959953
    [Google Scholar]
  56. WangY. LuK. LiW. WangZ. DingJ. ZhuZ. LiZ. MiR-200c-3p aggravates gastric cell carcinoma via KLF6.Genes Genomics202143111307131610.1007/s13258‑021‑01160‑6 34524611
    [Google Scholar]
  57. CondratC.E. ThompsonD.C. BarbuM.G. BugnarO.L. BobocA. CretoiuD. SuciuN. CretoiuS.M. VoineaS.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis.Cells20209227610.3390/cells9020276 31979244
    [Google Scholar]
  58. ZhuY. ZhengB. WangH. ChenL. New knowledge of the mechanisms of sorafenib resistance in liver cancer.Acta Pharmacol. Sin.201738561462210.1038/aps.2017.5 28344323
    [Google Scholar]
  59. WangQ. WuG. CheX. LiQ. ZhangZ. TangQ. Sorafenib induces renal cell carcinoma apoptosis via upregulating activating transcription factor 4.Pharmazie201873315616010.1691/ph.2018.7855 29544563
    [Google Scholar]
  60. LiY. GaoZ.H. QuX.J. The adverse effects of sorafenib in patients with advanced cancers.Basic Clin. Pharmacol. Toxicol.2015116321622110.1111/bcpt.12365 25495944
    [Google Scholar]
  61. HeY. LuoY. HuangL. ZhangD. WangX. JiJ. LiangS. New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers.Pharmacol. Res.202117010573210.1016/j.phrs.2021.105732 34139345
    [Google Scholar]
  62. TamuraR. TanakaT. AkasakiY. MurayamaY. YoshidaK. SasakiH. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: Perspectives for therapeutic implications.Med. Oncol.2020371210.1007/s12032‑019‑1329‑2 31713115
    [Google Scholar]
  63. SchneiderS. PeltierA. GrasA. ArendtV. Karasi-OmesC. MujawamariwaA. NdimubanziP.C. NdayisabaG. WennigR. Efavirenz in human breast milk, mothers’, and newborns’ plasma.J. Acquir. Immune Defic. Syndr.200848445045410.1097/QAI.0b013e31817bbc21 18614925
    [Google Scholar]
  64. HechtM. HarrerT. KörberV. SarpongE.O. MoserF. FiebigN. SchweglerM. StürzlM. FietkauR. DistelL.V. Cytotoxic effect of Efavirenz in BxPC-3 pancreatic cancer cells is based on oxidative stress and is synergistic with ionizing radiation.Oncol. Lett.20181521728173610.3892/ol.2017.7523 29434868
    [Google Scholar]
  65. AlesiniD. MosilloC. NasoG. CortesiE. IacovelliR. Clinical experience with everolimus in the second-line treatment of advanced renal cell carcinoma.Ther. Adv. Urol.20157528629410.1177/1756287215591764 26425143
    [Google Scholar]
  66. AweysH. LewisD. SheriffM. RabbaniR.D. LapitanP. SanchezE. PapadopoulosV. GhoseA. BoussiosS. Renal cell cancer – Insights in drug resistance mechanisms.Anticancer Res.202343114781479210.21873/anticanres.16675 37909991
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096321287240826065718
Loading
/content/journals/ccdt/10.2174/0115680096321287240826065718
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test