Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Introduction

Hydroxysteroid 17-beta dehydrogenase 4 (HSD17B4) is involved in the progression of hepatocellular carcinoma (HCC).

Aims

This study aimed to investigate the inhibitory effect of gamma-tocotrienol (γ-T3) on the proliferation and growth of HSD17B4-overexpressing HepG2 cells.

Methods

HepG2 cells were transfected with empty or HSD17B4-overexpressing plasmids, followed by vitamin E (VE) or γ-T3 treatment. MTS assay, Western blotting, qRT-PCR, and flow cytometry were employed to assess cell proliferation, protein expression, mRNA levels, and apoptosis. HSD17B4 interaction with γ-T3 was assessed by quantifying γ-T3 in the collected precipitate of HSD17B4 using anti-flag magnetic beads. Tumor xenografts were established in NSG mice, and tumor growth was monitored.

Results

HSD17B4 overexpression significantly promoted HepG2 cell proliferation, which was effectively counteracted by VE or γ-T3 treatment in a dose-dependent manner. VE and γ-T3 did not exert their effects through direct regulation of HSD17B4 expression. Instead, γ-T3 was found to interact with HSD17B4, inhibiting its activity in catalyzing the conversion of estradiol (E2) into estrone. Moreover, γ-T3 treatment led to a reduction in cyclin D1 expression and suppressed key proliferation signaling pathways, such as ERK, MEK, AKT, and STAT3. Additionally, γ-T3 promoted apoptosis in HSD17B4-overexpressing HepG2 cells. In an model, γ-T3 effectively reduced the growth of HepG2 xenograft tumors.

Conclusion

In conclusion, our study demonstrates that γ-T3 exhibits potent anti-proliferative and anti-tumor effects against HepG2 cells overexpressing HSD17B4. These findings highlight the therapeutic potential of γ-T3 in HCC treatment and suggest its role in targeting HSD17B4-associated pathways to inhibit tumor growth and enhance apoptosis.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096319171240623091614
2024-06-26
2025-04-16
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SamantH. AmiriH.S. ZibariG.B. Addressing the worldwide hepatocellular carcinoma: epidemiology, prevention and management.J. Gastrointest. Oncol.202112S2Suppl. 2S361S37310.21037/jgo.2020.02.0834422400
    [Google Scholar]
  3. VillanuevaA. MinguezB. FornerA. ReigM. LlovetJ.M. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy.Annu. Rev. Med.201061131732810.1146/annurev.med.080608.10062320059340
    [Google Scholar]
  4. BahardoustM. SarveazadA. AgahS. BabahajianA. AminiN. Predictors of 5 year survival rate in hepatocellular carcinoma patients.J. Res. Med. Sci.20192418610.4103/jrms.JRMS_1017_1831741658
    [Google Scholar]
  5. SunH. YangH. MaoY. Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering.Front. Pharmacol.202314115015110.3389/fphar.2023.115015137214451
    [Google Scholar]
  6. PatelN. YoppA.C. SingalA.G. Diagnostic delays are common among patients with hepatocellular carcinoma.J. Natl. Compr. Canc. Netw.201513554354910.6004/jnccn.2015.007425964640
    [Google Scholar]
  7. AbboudY. IsmailM. KhanH. Medina-MoralesE. AlsakarnehS. JaberF. PyrsopoulosN.T. Hepatocellular carcinoma incidence and mortality in the usa by sex, age, and race: A nationwide analysis of two decades.J. Clin. Transl. Hepatol.202400000000010.14218/JCTH.2023.0035638343612
    [Google Scholar]
  8. SingalA.G. PillaiA. TiroJ. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis.PLoS Med.2014114e100162410.1371/journal.pmed.100162424691105
    [Google Scholar]
  9. BelghitiJ. FuksD. Liver resection and transplantation in hepatocellular carcinoma.Liver Cancer201212718210.1159/00034240324159575
    [Google Scholar]
  10. ShahidiF. De CamargoA. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits.Int. J. Mol. Sci.20161710174510.3390/ijms1710174527775605
    [Google Scholar]
  11. TraberM.G. AtkinsonJ. Vitamin E, antioxidant and nothing more.Free Radic. Biol. Med.200743141510.1016/j.freeradbiomed.2007.03.02417561088
    [Google Scholar]
  12. AzziA. Many tocopherols, one vitamin E.Mol. Aspects Med.2018619210310.1016/j.mam.2017.06.00428624327
    [Google Scholar]
  13. KunnumakkaraA.B. SungB. RavindranJ. DiagaradjaneP. DeorukhkarA. DeyS. KocaC. YadavV.R. TongZ. GelovaniJ.G. GuhaS. KrishnanS. AggarwalB.B. γ-tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment.Cancer Res.201070218695870510.1158/0008‑5472.CAN‑10‑231820864511
    [Google Scholar]
  14. WongW.Y. WardL.C. FongC.W. YapW.N. BrownL. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats.Eur. J. Nutr.201756113315010.1007/s00394‑015‑1064‑1
    [Google Scholar]
  15. MuidS. FroemmingG.R.A. RahmanT. AliA.M. NawawiH.M. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells.Food Nutr. Res.20166013152610.3402/fnr.v60.3152627396399
    [Google Scholar]
  16. PangK.L. FoongL.C. Abd GhafarN. SoelaimanI.N. LawJ.X. LeongL.M. ChinK.Y. Transcriptomic analysis of the anticancer effects of annatto tocotrienol, delta-tocotrienol and gamma-tocotrienol on chondrosarcoma cells.Nutrients20221420427710.3390/nu1420427736296960
    [Google Scholar]
  17. Abdul Rahman SazliF. JubriZ. Abdul RahmanM. KarsaniS.A. Md TopA.G. Wan NgahW.Z. Gamma-tocotrienol treatment increased peroxiredoxin-4 expression in HepG2 liver cancer cell line.BMC Complement. Altern. Med.20151516410.1186/s12906‑015‑0590‑y25886747
    [Google Scholar]
  18. RajendranP. LiF. ManuK.A. ShanmugamM.K. LooS.Y. KumarA.P. SethiG. γ-Tocotrienol is a novel inhibitor of constitutive and inducible STAT3 signalling pathway in human hepatocellular carcinoma: potential role as an antiproliferative, pro-apoptotic and chemosensitizing agent.Br. J. Pharmacol.2011163228329810.1111/j.1476‑5381.2010.01187.x21198544
    [Google Scholar]
  19. SiveenK.S. AhnK.S. OngT.H. ShanmugamM.K. LiF. YapW.N. KumarA.P. FongC.W. TergaonkarV. HuiK.M. SethiG. γ-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model.Oncotarget2014571897191110.18632/oncotarget.187624722367
    [Google Scholar]
  20. SailoB.L. BanikK. PadmavathiG. JavadiM. BordoloiD. KunnumakkaraA.B. Tocotrienols: The promising analogues of vitamin E for cancer therapeutics.Pharmacol. Res.201813025927210.1016/j.phrs.2018.02.01729496592
    [Google Scholar]
  21. SakaiM. OkabeM. TachibanaH. YamadaK. Apoptosis induction by γ-tocotrienol in human hepatoma Hep3B cells.J. Nutr. Biochem.2006171067267610.1016/j.jnutbio.2005.11.00116517139
    [Google Scholar]
  22. BurdeosG.C. ItoJ. EitsukaT. NakagawaK. KimuraF. MiyazawaT. δ and γ tocotrienols suppress human hepatocellular carcinoma cell proliferation via regulation of Ras-Raf-MEK-ERK pathway-associated upstream signaling.Food Funct.20167104170417410.1039/C6FO00826G27713963
    [Google Scholar]
  23. SmyL. StraseskiJ.A. Measuring estrogens in women, men, and children: Recent advances 2012–2017.Clin. Biochem.201862112310.1016/j.clinbiochem.2018.05.01429800559
    [Google Scholar]
  24. Asokan ShibuM. KuoW.W. KuoC.H. DayC.H. ShenC.Y. ChungL.C. LaiC.H. PanL.F. Vijaya PadmaV. HuangC.Y. Potential phytoestrogen alternatives exert cardio-protective mechanisms via estrogen receptors.Biomedicine2017721110.1051/bmdcn/201707020428612709
    [Google Scholar]
  25. RaghavaN. DasB.C. RayS.K. Neuroprotective effects of estrogen in CNS injuries: insights from animal models.Neurosci. Neuroecon.20176152910.2147/NAN.S10513428845391
    [Google Scholar]
  26. CaronP. Audet-WalshE. LépineJ. BélangerA. GuillemetteC. Profiling endogenous serum estrogen and estrogen-glucuronides by liquid chromatography-tandem mass spectrometry.Anal. Chem.20098124101431014810.1021/ac901912619916521
    [Google Scholar]
  27. StraubR.H. The complex role of estrogens in inflammation.Endocr. Rev.200728552157410.1210/er.2007‑000117640948
    [Google Scholar]
  28. IavaroneM. LamperticoP. SelettiC. Francesca DonatoM. RonchiG. Del NinnoE. ColomboM. The clinical and pathogenetic significance of estrogen receptor-β expression in chronic liver diseases and liver carcinoma.Cancer200398352953410.1002/cncr.1152812879470
    [Google Scholar]
  29. BradyC.W. Liver disease in menopause.World J. Gastroenterol.201521257613762010.3748/wjg.v21.i25.761326167064
    [Google Scholar]
  30. WangJ. GreenP.S. SimpkinsJ.W. Estradiol protects against ATP depletion, mitochondrial membrane potential decline and the generation of reactive oxygen species induced by 3-nitroproprionic acid in SK-N-SH human neuroblastoma cells.J. Neurochem.200177380481110.1046/j.1471‑4159.2001.00271.x11331409
    [Google Scholar]
  31. SongS. WuS. WangY. WangZ. YeC. SongR. SongD. RuanY. 17β-estradiol inhibits human umbilical vascular endothelial cell senescence by regulating autophagy via p53.Exp. Gerontol.2018114576610.1016/j.exger.2018.10.02130399406
    [Google Scholar]
  32. KovatsS. Estrogen receptors regulate innate immune cells and signaling pathways.Cell. Immunol.20152942636910.1016/j.cellimm.2015.01.01825682174
    [Google Scholar]
  33. TianG-X. SunY. PangC-J. TanA-H. GaoY. ZhangH-Y. YangX-B. LiZ-X. MoZ-N. Oestradiol is a protective factor for non-alcoholic fatty liver disease in healthy men.Obes. Rev.201213438138710.1111/j.1467‑789X.2011.00978.x22239319
    [Google Scholar]
  34. TanakaK. SakaiH. HashizumeM. HirohataT. Serum testosterone:estradiol ratio and the development of hepatocellular carcinoma among male cirrhotic patients.Cancer Res.200060185106511011016636
    [Google Scholar]
  35. YangW. LuY. XuY. XuL. ZhengW. WuY. LiL. ShenP. Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor-associated macrophages (TAMs).J. Biol. Chem.201228748401404014910.1074/jbc.M112.34876322908233
    [Google Scholar]
  36. XuH. WeiY. ZhangY. XuY. LiF. LiuJ. ZhangW. HanX. TanR. ShenP. Oestrogen attenuates tumour progression in hepatocellular carcinoma.J. Pathol.2012228221622910.1002/path.400922374713
    [Google Scholar]
  37. ShimizuI. YasudaM. MizobuchiY. MaY-R. LiuF. ShibaM. HorieT. ItoS. Suppressive effect of oestradiol on chemical hepatocarcinogenesis in rats.Gut199842111211910.1136/gut.42.1.1129505896
    [Google Scholar]
  38. ShimizuI. KohnoN. TamakiK. ShonoM. HuangH.W. HeJ.H. YaoD.F. Female hepatology: Favorable role of estrogen in chronic liver disease with hepatitis B virus infection.World J. Gastroenterol.200713324295430510.3748/wjg.v13.i32.429517708600
    [Google Scholar]
  39. RogersA.B. TheveE.J. FengY. FryR.C. TaghizadehK. ClappK.M. BoussahmainC. CormierK.S. FoxJ.G. Hepatocellular carcinoma associated with liver-gender disruption in male mice.Cancer Res.20076724115361154610.1158/0008‑5472.CAN‑07‑147918089782
    [Google Scholar]
  40. NauglerW.E. SakuraiT. KimS. MaedaS. KimK. ElsharkawyA.M. KarinM. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production.Science2007317583412112410.1126/science.114048517615358
    [Google Scholar]
  41. de LaunoitY. AdamskiJ. Unique multifunctional HSD17B4 gene product: 17beta-hydroxysteroid dehydrogenase 4 and D-3-hydroxyacyl-coenzyme A dehydrogenase/hydratase involved in Zellweger syndrome.J. Mol. Endocrinol.199922322724010.1677/jme.0.022022710343282
    [Google Scholar]
  42. LuX. KongL. WangX. LiuW. MaP. JiangL. 17β-hydroxysteroid dehydrogenase-4 induces liver cancer proliferation-associated genes via STAT3 activation.Oncol. Rep.20194132009201910.3892/or.2019.698130747222
    [Google Scholar]
  43. ZhangN. WangY-Q. SunC. ShiY. HouL.G. YaoM. HuM. WangX.M. MaP.P. LiW.J. JiangL.L. High expression of peroxisomal D-bifunctional protein in cytosol regulates apoptosis and energy metabolism of hepatocellular carcinoma cells via PI3K/AKT pathway.Am. J. Cancer Res.20231351884190337293151
    [Google Scholar]
  44. LuX. MaP. KongL. WangX. WangY. JiangL. Vitamin K2 inhibits hepatocellular carcinoma cell proliferation by binding to 17β-hydroxysteroid dehydrogenase 4.Front. Oncol.20211175760310.3389/fonc.2021.757603
    [Google Scholar]
  45. PrasadS. GuptaS.C. TyagiA.K. AggarwalB.B. γ-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules.Br. J. Cancer2016115781482410.1038/bjc.2016.25727575851
    [Google Scholar]
  46. YapW.N. ZaidenN. LukS.Y. LeeD.T.W. LingM.T. WongY.C. YapY.L. In vivo evidence of γ-tocotrienol as a chemosensitizer in the treatment of hormone-refractory prostate cancer.Pharmacology201085424825810.1159/00027820520375535
    [Google Scholar]
  47. SchmittgenT.D. LivakK.J. Analyzing real-time PCR data by the comparative CT method.Nat. Protoc.2008361101110810.1038/nprot.2008.7318546601
    [Google Scholar]
  48. ZaidenN. YapW.N. OngS. XuC.H. TeoV.H. ChangC.P. ZhangX.W. NesaretnamK. ShibaS. YapY.L. Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion.J. Atheroscler. Thromb.201017101019103210.5551/jat.491120702976
    [Google Scholar]
  49. LiuM.H. LinX.L. LiJ. HeJ. TanT.P. WuS.J. YuS. ChenL. LiuJ. TianW. ChenY.D. FuH.Y. YuanC. ZhangY. Resveratrol induces apoptosis through modulation of the Akt/FoxO3a/Bim pathway in HepG2 cells.Mol. Med. Rep.20161321689169410.3892/mmr.2015.469526709007
    [Google Scholar]
  50. DawsonP.A. Bile acid metabolism. Biochemistry of Lipids.Lipoproteins and MembranesElsevier2016359389
    [Google Scholar]
  51. BreitlingR. MarijanovićZ. PerovićD. AdamskiJ. Evolution of 17β-HSD type 4, a multifunctional protein of β-oxidation.Mol. Cell. Endocrinol.20011711-220521010.1016/S0303‑7207(00)00415‑911165031
    [Google Scholar]
  52. LatheR. KotelevtsevY. Steroid signaling: Ligand-binding promiscuity, molecular symmetry, and the need for gating.Steroids201482142210.1016/j.steroids.2014.01.00224462647
    [Google Scholar]
  53. HiltunenJ.K. KastaniotisA.J. AutioK.J. JiangG. ChenZ. GlumoffT. 17B-hydroxysteroid dehydrogenases as acyl thioester metabolizing enzymes.Mol. Cell. Endocrinol.201948910711810.1016/j.mce.2018.11.01230508570
    [Google Scholar]
  54. RasiahK.K. Gardiner-GardenM. PadillaE.J.D. MöllerG. KenchJ.G. AllesM.C. EggletonS.A. StrickerP.D. AdamskiJ. SutherlandR.L. HenshallS.M. HayesV.M. HSD17B4 overexpression, an independent biomarker of poor patient outcome in prostate cancer.Mol. Cell. Endocrinol.20093011-2899610.1016/j.mce.2008.11.02119100308
    [Google Scholar]
  55. DingG. LiuS. DingQ. FengC. Overexpression of HSD17B4 exerts tumor suppressive function in adrenocortical carcinoma and is not associated with hormone excess.Oncotarget201787011473611474510.18632/oncotarget.2282729383116
    [Google Scholar]
  56. HilbornE. StålO. JanssonA. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer.Oncotarget2017818305523056210.18632/oncotarget.1554728430630
    [Google Scholar]
  57. LuX. MaP. ShiY. YaoM. HouL. ZhangP. JiangL. NF-κB increased expression of 17β-hydroxysteroid dehydrogenase 4 promotes HepG2 proliferation via inactivating estradiol.Mol. Cell. Endocrinol.201540111110.1016/j.mce.2014.11.016
    [Google Scholar]
  58. SakaiM. OkabeM. YamasakiM. TachibanaH. YamadaK. Induction of apoptosis by tocotrienol in rat hepatoma dRLh-84 cells.Anticancer Res.2004243a1683168815274341
    [Google Scholar]
  59. HiuraY. TachibanaH. ArakawaR. AoyamaN. OkabeM. SakaiM. YamadaK. Specific accumulation of γ- and δ-tocotrienols in tumor and their antitumor effect in vivo.J. Nutr. Biochem.200920860761310.1016/j.jnutbio.2008.06.00418824342
    [Google Scholar]
  60. PatacsilD. TranA.T. ChoY.S. SuyS. SaenzF. MalyukovaI. RessomH. CollinsS.P. ClarkeR. KumarD. Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells.J. Nutr. Biochem.20122319310010.1016/j.jnutbio.2010.11.01221429729
    [Google Scholar]
  61. AggarwalV. KashyapD. SakK. TuliH. JainA. ChaudharyA. GargV. SethiG. YererM. Molecular mechanisms of action of tocotrienols in cancer: Recent trends and advancements.Int. J. Mol. Sci.201920365610.3390/ijms2003065630717416
    [Google Scholar]
  62. SubramaniamS. Anandha RaoJ.S. RamdasP. NgM.H. Kannan KuttyM. SelvadurayK.R. RadhakrishnanA.K. Reduced infiltration of regulatory T cells in tumours from mice fed daily with gamma-tocotrienol supplementation.Clin. Exp. Immunol.2021206216117210.1111/cei.1365034331768
    [Google Scholar]
  63. SubramaniamS. RadhakrishnanA.K. RaoJ.S.A. Palm gamma-tocotrienol supplementation suppress tumour growth and metastasis in a syngeneic mouse model of breast cancer.J. Oil Palm Res.2022342368379
    [Google Scholar]
  64. De SilvaL. ChuahL.H. MeganathanP. FuJ.Y. Tocotrienol and cancer metastasis.Biofactors201642214916210.1002/biof.125926948691
    [Google Scholar]
  65. LeeS.A. LeeJ. KimK. MoonH. MinC. MoonB. KimD. YangS. ParkH. LeeG. ParkR. ParkD. The peroxisomal localization of Hsd17b4 is regulated by its interaction with phosphatidylserine.Mol. Cells202144421422210.14348/molcells.2021.221733935042
    [Google Scholar]
  66. OtsukaM. KatoN. IchimuraT. AbeS. TanakaY. TaniguchiH. HoshidaY. MoriyamaM. WangY. ShaoR.X. NarayanD. MuroyamaR. KanaiF. KawabeT. IsobeT. OmataM. Vitamin K2 binds 17β-hydroxysteroid dehydrogenase 4 and modulates estrogen metabolism.Life Sci.200576212473248210.1016/j.lfs.2004.12.02015763078
    [Google Scholar]
  67. WuS.J. HuangG.Y. NgL.T. γ-Tocotrienol induced cell cycle arrest and apoptosis via activating the Bax-mediated mitochondrial and AMPK signaling pathways in 3T3-L1 adipocytes.Food Chem. Toxicol.20135950151310.1016/j.fct.2013.06.01123816832
    [Google Scholar]
  68. ShahS.J. SylvesterP.W. γ-tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor kappaB activity.Exp. Biol. Med. (Maywood)2005230423524110.1177/15353702052300040215792944
    [Google Scholar]
  69. SamantG.V. SylvesterP.W. γ-Tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells.Cell Prolif.200639656357410.1111/j.1365‑2184.2006.00412.x17109639
    [Google Scholar]
  70. Shin-KangS. RamsauerV.P. LightnerJ. ChakrabortyK. StoneW. CampbellS. ReddyS.A.G. KrishnanK. Tocotrienols inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by suppressing the ErbB2 pathway.Free Radic. Biol. Med.20115161164117410.1016/j.freeradbiomed.2011.06.00821723941
    [Google Scholar]
  71. ManuK.A. ShanmugamM.K. RamachandranL. LiF. FongC.W. KumarA.P. TanP. SethiG. First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway.Clin. Cancer Res.20121882220222910.1158/1078‑0432.CCR‑11‑247022351692
    [Google Scholar]
  72. TangK. LiuJ. RussellP. ClementsJ. LingM.T. Gamma-tocotrienol induces apoptosis in prostate cancer cells by targeting the Ang-1/Tie-2 signalling pathway.Int. J. Mol. Sci.2019205116410.3390/ijms2005116430866453
    [Google Scholar]
  73. AlgayadhI.G. DronamrajuV. SylvesterP.W. Role of Rac1/WAVE2 signaling in mediating the inhibitory effects of γ-tocotrienol on mammary cancer cell migration and invasion.Biol. Pharm. Bull.201639121974198210.1248/bpb.b16‑0046127904039
    [Google Scholar]
  74. ZhangY. MaK. LiuJ. WangH. TianW. TuY. SunW. γ-tocotrienol inhibits the invasion and migration of human gastric cancer cells through downregulation of cyclooxygenase-2 expression.Oncol. Rep.2018402999100710.3892/or.2018.649729901169
    [Google Scholar]
  75. YapW.N. ChangP.N. HanH.Y. LeeD.T.W. LingM.T. WongY.C. YapY.L. γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways.Br. J. Cancer200899111832184110.1038/sj.bjc.660476319002171
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096319171240623091614
Loading
/content/journals/ccdt/10.2174/0115680096319171240623091614
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test