Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Introduction/Background

Because of the well-established link between angiogenesis and tumor development, the use of antiangiogenic therapeutics, such as those targeting VEGFR-2, presents a promising approach to cancer treatment. In the current study, a set of five hydrazine-1carbothioamide (compounds 3a-e) and three hydrazine-1-carboxamide derivatives (compounds 4a-c) were successfully synthesized from 3-phenoxybenzoic acid. These compounds were specially created as antiproliferative agents with the goal of targeting cancer cells by inhibiting VEGFR-2 tyrosine kinase.

Materials and Methods

The new derivatives were synthesized by conventional organic methods, and their structure was versified by IR, 1HNMR, 13CNMR, and mass spectroscopy. investigation was carried out to identify the compounds’ target, molecular similarity, ADMET, and toxicity profile. The cytotoxic activity of the prepared compounds was evaluated against three human cancer cell lines (DLD1 colorectal adenocarcinoma, HeLa cervical cancer, and HepG2 hepatocellular carcinoma). The effects of the leading compound on cell cycle progression and apoptosis induction were investigated by flow cytometry, and the specific apoptotic pathway triggered by the treatment was evaluated by RT-PCR and immunoblotting. Finally, the inhibitory activities of the new compounds against VEGFR-2 was measured.

Results

The designed derivatives exhibited comparable binding positions and interactions to the VEGFR-2 binding site to that of sorafenib (a standard VEGFR-2 tyrosine kinase inhibitor), as determined by molecular docking analysis. Compound 4b was the most cytotoxic compound, achieving the lowest IC against HeLa cells. Compound 4b, a strong representative of the synthesized series, induced cell cycle arrest at the G2/M phase, increased the proportion of necrotic and apoptotic HeLa cells, and activated caspase 3. The EC value of compound 4b against VEGFR-2 kinase activity was comparable to sorafenib’s.

Conclusion

Overall, the findings suggest that compound 4b has a promising future as a starting point for the development of new anticancer drugs.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096307334240429050730
2024-05-13
2025-06-21
Loading full text...

Full text loading...

References

  1. Abd El-MageedM.M.A. EissaA.A.M. FaragA.E.S. OsmanE.E.A. Design and synthesis of novel furan, furo[2,3-d]pyrimidine and furo[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives as potential VEGFR-2 inhibitors.Bioorg. Chem.202111610533610.1016/j.bioorg.2021.10533634530235
    [Google Scholar]
  2. TaghourM.S. ElkadyH. EldehnaW.M. El-DeebN.M. KenawyA.M. ElkaeedE.B. AlsfoukA.A. AlesawyM.S. MetwalyA.M. EissaI.H. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: in-vitro anticancer evaluation and in-silico studies.J. Enzyme Inhib. Med. Chem.20223711903191710.1080/14756366.2022.208569335801403
    [Google Scholar]
  3. HassanpourS.H. DehghaniM. Review of cancer from perspective of molecular.J. Cancer Res. Pract.20174412712910.1016/j.jcrpr.2017.07.001
    [Google Scholar]
  4. JadalaC. SathishM. ReddyT.S. ReddyV.G. TokalaR. BhargavaS.K. ShankaraiahN. NageshN. KamalA. Synthesis and in vitro cytotoxicity evaluation of β-carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition.Bioorg. Med. Chem.201927153285329810.1016/j.bmc.2019.06.00731227365
    [Google Scholar]
  5. ButterfieldL.H. KaufmanH.L. MarincolaF.M. Cancer immunotherapy principles and practice.2nd edNew YorkSpringer Publishing Company2022
    [Google Scholar]
  6. HurmathU.S. ReddyG.K. AravazhiT. Synthesis and in vitro anti-tumor activity of some novel 2, 3-disubstituted quinazolin 4(3H)-one derivatives.J. Appl. Pharm. Sci.2013313614010.7324/JAPS.2013.31024
    [Google Scholar]
  7. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/2050312121103436634408877
    [Google Scholar]
  8. RallisK.S. Lai YauT.H. SiderisM. Chemoradiotherapy in cancer treatment: Rationale and clinical applications.Anticancer Res.20214111710.21873/anticanres.1474633419794
    [Google Scholar]
  9. OdachowskiM. MarschnerC. BlomB. A review on 1,1-bis(diphenylphosphino)methane bridged homo and heterobimetallic complexes for anticancer applications: Synthesis, structure, and cytotoxicity.Eur. J. Med. Chem.202020411261310.1016/j.ejmech.2020.11261332784095
    [Google Scholar]
  10. DudleyA.C. GriffioenA.W. Pathological angiogenesis: Mechanisms and therapeutic strategies.Angiogenesis202326331334710.1007/s10456‑023‑09876‑737060495
    [Google Scholar]
  11. IsnerJ.M. AsaharaT. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization.J. Clin. Invest.199910391231123610.1172/JCI688910225965
    [Google Scholar]
  12. KolteD. McClungJ.A. AronowW.S. Vasculogenesis and angiogenesis.Translational research in coronary artery disease: pathophysiology to treatment.Elsevier Inc2016496510.1016/B978‑0‑12‑802385‑3.00006‑1
    [Google Scholar]
  13. MadedduP. Therapeutic angiogenesis and vasculogenesis for tissue regeneration.Exp. Physiol.200590331532610.1113/expphysiol.2004.02857115778410
    [Google Scholar]
  14. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑731690961
    [Google Scholar]
  15. FallahA. SadeghiniaA. KahrobaH. SamadiA. HeidariH.R. BradaranB. ZeinaliS. MolaviO. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases.Biomed. Pharmacother.201911077578510.1016/j.biopha.2018.12.02230554116
    [Google Scholar]
  16. Gródecka-SzwajkiewiczD. UlańczykZ. ZagrodnikE. ŁuczkowskaK. RogińskaD. KawaM.P. StecewiczI. SafranowK. MachalińskiB. Differential secretion of angiopoietic factors and expression of microrna in umbilical cord blood from healthy appropriate-for-gestational-age preterm and term newborns in search of biomarkers of angiogenesis-related processes in preterm birthInt. J. Mol. Sci.2020214130510.3390/ijms2104130532075190
    [Google Scholar]
  17. MelincoviciC.S. BoşcaA.B. ŞuşmanS. MărgineanM. MihuC. IstrateM. MoldovanI.M. RomanA.L. MihuC.M. Vascular endothelial growth factor (VEGF) key factor in normal and pathological angiogenesis.Rom. J. Morphol. Embryol.201859245546730173249
    [Google Scholar]
  18. SalajeghehA. Angiogenesis in health, disease and malignancy.SwitzerlandSpringer International Publishing201610.1007/978‑3‑319‑28140‑7
    [Google Scholar]
  19. Sudhesh DevS. Zainal AbidinS.A. FarghadaniR. OthmanI. NaiduR. Receptor tyrosine kinases and their signaling pathways as therapeutic targets of curcumin in cancer.Front. Pharmacol.20211277251010.3389/fphar.2021.77251034867402
    [Google Scholar]
  20. GoelS. DudaD.G. XuL. MunnL.L. BoucherY. FukumuraD. JainR.K. Normalization of the vasculature for treatment of cancer and other diseases.Physiol. Rev.20119131071112110.1152/physrev.00038.201021742796
    [Google Scholar]
  21. PotenteM. MäkinenT. Vascular heterogeneity and specialization in development and disease.Nat. Rev. Mol. Cell Biol.201718847749410.1038/nrm.2017.3628537573
    [Google Scholar]
  22. ZhaoY. AdjeiA.A. Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor.Oncologist201520666067310.1634/theoncologist.2014‑046526001391
    [Google Scholar]
  23. El-DashY. ElzayatE. AbdouA.M. HassanR.A. Novel thienopyrimidine-aminothiazole hybrids: Design, synthesis, antimicrobial screening, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and VEGFR-2 inhibition.Bioorg. Chem.202111410513710.1016/j.bioorg.2021.10513734237644
    [Google Scholar]
  24. GoelS. WongA.H.K. JainR.K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease.Cold Spring Harb. Perspect. Med.201223a00648610.1101/cshperspect.a00648622393532
    [Google Scholar]
  25. Lopes-CoelhoF. MartinsF. PereiraS.A. SerpaJ. Anti-angiogenic therapy: Current challenges and future perspectives.Int. J. Mol. Sci.2021227376510.3390/ijms2207376533916438
    [Google Scholar]
  26. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w34054126
    [Google Scholar]
  27. ArditoF. GiulianiM. PerroneD. TroianoG. MuzioL.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review).Int. J. Mol. Med.201740227128010.3892/ijmm.2017.303628656226
    [Google Scholar]
  28. WilkesG.M. Targeted Therapy: Attacking cancer with molecular and immunological targeted agents.Asia Pac. J. Oncol. Nurs.20185213715510.4103/apjon.apjon_79_1729607374
    [Google Scholar]
  29. Al-HuseinB. AbdallaM. TrepteM. DeRemerD.L. SomanathP.R. Antiangiogenic therapy for cancer: An update.Pharmacotherapy201232121095111110.1002/phar.114723208836
    [Google Scholar]
  30. MahatoA.K. SidorovaY.A. Ret receptor tyrosine kinase: Role in neurodegeneration, obesity, and cancer.Int. J. Mol. Sci.20202119710810.3390/ijms2119710832993133
    [Google Scholar]
  31. SaharinenP. EklundL. PulkkiK. BonoP. AlitaloK. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis.Trends Mol. Med.201117734736210.1016/j.molmed.2011.01.01521481637
    [Google Scholar]
  32. GoodmanV.L. RockE.P. DagherR. RamchandaniR.P. AbrahamS. GobburuJ.V.S. BoothB.P. VerboisS.L. MorseD.E. LiangC.Y. ChidambaramN. JiangJ.X. TangS. MahjoobK. JusticeR. PazdurR. Approval summary: Sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma.Clin. Cancer Res.20071351367137310.1158/1078‑0432.CCR‑06‑232817332278
    [Google Scholar]
  33. Le TourneauC. RaymondE. FaivreS. Sunitinib: A novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST).Ther. Clin. Risk Manag.20073234134810.2147/tcrm.2007.3.2.34118360643
    [Google Scholar]
  34. HuangA. YangX.R. ChungW.Y. DennisonA.R. ZhouJ. Targeted therapy for hepatocellular carcinoma.Signal Transduct. Target. Ther.20205114610.1038/s41392‑020‑00264‑x32782275
    [Google Scholar]
  35. Korean Liver Cancer AssociationK.L.C.A. National Cancer CenterN.C.C. 2018 korean liver cancer association–national cancer center korea practice guidelines for the management of hepatocellular carcinoma.Gut Liver201913322729910.5009/gnl1902431060120
    [Google Scholar]
  36. ChaudhariP. BariS. SuranaS. ShirkhedkarA. WakodeS. ShelarS. RacharlaS. UgaleV. GhodkeM. Logical synthetic strategies and structure-activity relationship of indolin-2-one hybrids as small molecule anticancer agents: An overview.J. Mol. Struct.2022124713128010.1016/j.molstruc.2021.131280
    [Google Scholar]
  37. HoelderS. ClarkeP.A. WorkmanP. Discovery of small molecule cancer drugs: Successes, challenges and opportunities.Mol. Oncol.20126215517610.1016/j.molonc.2012.02.00422440008
    [Google Scholar]
  38. RoskoskiR.Jr A historical overview of protein kinases and their targeted small molecule inhibitors.Pharmacol. Res.201510012310.1016/j.phrs.2015.07.01026207888
    [Google Scholar]
  39. MirshafieyA. GhalamfarsaG. AsghariB. AziziG. Receptor tyrosine kinase and tyrosine kinase inhibitors: New hope for success in multiple sclerosis therapy.Innov. Clin. Neurosci.2014117-8233625337443
    [Google Scholar]
  40. MetibemuD.S. AkinloyeO.A. AkamoA.J. OjoD.A. OkeowoO.T. OmotuyiI.O. Exploring receptor tyrosine kinases-inhibitors in Cancer treatments.Egypt. J. Med. Hum. Genet.20192013510.1186/s43042‑019‑0035‑0
    [Google Scholar]
  41. ModiS.J. KulkarniV.M. Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, ‘DFG-out’ inhibitors.J. Biomol. Struct. Dyn.202240125712572710.1080/07391102.2021.187241733459187
    [Google Scholar]
  42. Garcia-AlbenizX. ChanA.T. Aspirin for the prevention of colorectal cancer.Best Pract. Res. Clin. Gastroenterol.2011254-546147210.1016/j.bpg.2011.10.01522122763
    [Google Scholar]
  43. GrayR.T. ColemanH.G. HughesC. MurrayL.J. CardwellC.R. Low-dose aspirin use and survival in colorectal cancer: results from a population-based cohort study.BMC Cancer201818122810.1186/s12885‑018‑4142‑y29486728
    [Google Scholar]
  44. HartogE. MenasheO. KlerE. YaronS. Salicylate reduces the antimicrobial activity of ciprofloxacin against extracellular Salmonella enterica serovar Typhimurium, but not against Salmonella in macrophages.J. Antimicrob. Chemother.201065588889610.1093/jac/dkq07720237076
    [Google Scholar]
  45. KadriH. LambourneO.A. MehellouY. Niclosamide, a drug with many (re)purposes.ChemMedChem201813111088109110.1002/cmdc.20180010029603892
    [Google Scholar]
  46. KumarM. ChawlaR. GoyalM. Topical anesthesia.J. Anaesthesiol. Clin. Pharmacol.201531445045610.4103/0970‑9185.16904926702198
    [Google Scholar]
  47. NaveedS. QamarF. ZainabS. Simple UV spectrophotometric assay of Furosemide.J. Innov. Pharm. Biol. Sci.20141397101
    [Google Scholar]
  48. PalS.A. AvneetG. SiddhrajS.S. Gallic Acid: Pharmacogical promising lead molecule: A review.Int. J. Pharmacogn. Phytochem. Res.2018104132138
    [Google Scholar]
  49. ChongK.P. RossallS. AtongM. In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against ganoderma boninense.J. Agric. Sci.200912152010.5539/jas.v1n2p15
    [Google Scholar]
  50. SinghK.S. SinghA. Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives.J. Mol. Struct.2022126513330210.1016/j.molstruc.2022.133302
    [Google Scholar]
  51. SoaresJ.X. AfonsoI. OmerbasicA. LoureiroD.R.P. PintoM.M.M. AfonsoC.M.M. The chemical space of marine antibacterials: Diphenyl ethers, benzophenones, xanthones, and anthraquinones.Molecules20232810407310.3390/molecules2810407337241815
    [Google Scholar]
  52. SpasovA.A. PopovY.V. LobasenkoV.S. KorchaginaT.K. VassilievP.M. KuznetsovaV.A. BrigadirovaA.A. RashchenkoA.I. BabkovD.A. KochetkovA.N. KovalevaA.I. EfremovaO.S. Synthesis and pharmacological activity of 3-phenoxybenzoic acid derivatives.Russ. J. Bioorganic Chem.201743216316910.1134/S1068162017020145
    [Google Scholar]
  53. ChenT. XiongH. YangJ.F. ZhuX.L. QuR.Y. YangG.F. Diaryl ether: A privileged scaffold for drug and agrochemical discovery.J. Agric. Food Chem.202068379839987710.1021/acs.jafc.0c0336932786826
    [Google Scholar]
  54. MareddyJ. NallapatiS.B. AnireddyJ. DeviY.P. MangamooriL.N. KapavarapuR. PalS. Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells.Bioorg. Med. Chem. Lett.201323246721672710.1016/j.bmcl.2013.10.03524215890
    [Google Scholar]
  55. SunC.Y. LiY.S. ShiA.L. LiY.F. CaoR.F. DingH.W. YinQ.Q. ZhangL.J. ZhengH.C. SongH.R. Synthesis and antiproliferative activity of novel 4-substituted-phenoxy-benzamide derivatives.Chin. Chem. Lett.201526101307131010.1016/j.cclet.2015.06.017
    [Google Scholar]
  56. AbbasA.H. MahmoodA.A.R. TahtamouniL.H. Al-MazaydehZ.A. RammahaM.S. AlsoubaniF. Al-bayatiR.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: synthesis, docking study, and anticancer activity.Pharmacia202168367969210.3897/pharmacia.68.e70654
    [Google Scholar]
  57. HmoodK.S. KubbaA.R. Al-BayatiR.I. SalehA.M. Synthesis, and anti-tumor evaluation of some new flurbiprofen derivatives against MCF-7 and WRL-68 cell lines.Indones. J. Pharm.20213211734
    [Google Scholar]
  58. TawfeeqM.F. QassirA.J. Synthesis, characterization, and antibacterial evaluation of new vanillic acid derivatives.Iraqi J. Pharm Sci.202029212913810.31351/vol29iss2pp129‑138
    [Google Scholar]
  59. HassanO.M. SarsamS.W. Synthesis, characterization and preliminary anti-inflammatory evaluation of new etodolac derivatives.Iraqi J. Pharm Sci.201928110611210.31351/vol28iss1pp106‑112
    [Google Scholar]
  60. KubbaA.A.R.M. ShihabW.A. Al-ShawiN.N. In silico and in vitro approach for design, synthesis, and anti-proliferative activity of novel derivatives of 5-(4-aminophenyl)-4-substituted phenyl-2, 4-dihydro-3h-1, 2, 4-triazole-3-thione.Res. J. Pharm. Technol.20201373329333910.5958/0974‑360X.2020.00591.0
    [Google Scholar]
  61. HusseinS.A.A. KubbaA. BalakitA.A. TahtamouniL.H. AbbasA.H. Design, Synthesis, in silico and in vitro evaluation of new combretastatin A-4 analogs as antimitotic antitumor agents.Med. Chem.202319101018103610.2174/157340641966623053015574137259214
    [Google Scholar]
  62. Al-RubayeI.M. Razzak MahmoodA.A. TahtamouniL.H. AlSakhenM.F. KanaanS.I. SalehK.M. YasinS.R. In silico and in vitro evaluation of novel carbothioamide-based and heterocyclic derivatives of 4-(tert-butyl)-3-methoxybenzoic acid as EGFR tyrosine kinase allosteric site inhibitors.Results Chem.2024710132910.1016/j.rechem.2024.101329
    [Google Scholar]
  63. YaseenY. KubbaA. ShihabW. TahtamouniL. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities.Pharmacia202269359561410.3897/pharmacia.69.e86504
    [Google Scholar]
  64. Abdul HusseinS.A. Razzak MahmoodA.A. TahtamouniL.H. BalakitA.A. YaseenY.S. Al-HasaniR.A. New combretastatin analogs as anticancer agents: Design, synthesis, microtubules polymerization inhibition, and molecular docking studies.Chem. Biodivers.2023204e20220120610.1002/cbdv.20220120636890635
    [Google Scholar]
  65. IvanovaL. Tammiku-TaulJ. García-SosaA.T. SidorovaY. SaarmaM. KarelsonM. Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRα1 and small-molecule ligands.ACS Omega201839114071141410.1021/acsomega.8b0152430320260
    [Google Scholar]
  66. KumariR. KumarR. LynnA. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m24850022
    [Google Scholar]
  67. PG. M KK. Docking studies and molecular dynamics simulation of triazole benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity.RSC Advances20211160380793809310.1039/D1RA07377J35498092
    [Google Scholar]
  68. SangandeF. JuliantiE. TjahjonoD.H. Ligand-based pharmacophore modeling, molecular docking, and molecular dynamic studies of dual tyrosine kinase inhibitor of EGFR and VEGFR2.Int. J. Mol. Sci.20202120777910.3390/ijms2120777933096664
    [Google Scholar]
  69. HassanO.M. Razzak MahmoodA.A. HamzahA.H. TahtamouniL.H. Design, synthesis, and molecular docking studies of 5-bromoindole-2-carboxylic acid hydrazone derivatives: In vitro anticancer and VEGFR-2 inhibitory effects.ChemistrySelect2022746e20220372610.1002/slct.202203726
    [Google Scholar]
  70. MehihiA.A.R. KubbaA.A.R. TahtamouniL.H. Discovery of new fenamate-based derivatives as anticancer agents and potent VEGFR-2 inhibitors.Int. J. Health Sci.20226S69160917910.53730/ijhs.v6nS6.12421
    [Google Scholar]
  71. AlsaadH. KubbaA. TahtamouniL.H. HamzahA.H. Synthesis, docking study, and structure activity relationship of novel anti-tumor 1, 2, 4 triazole derivatives incorporating 2-(2, 3- dimethyl aminobenzoic acid) moiety.Pharmacia202269241542810.3897/pharmacia.69.e83158
    [Google Scholar]
  72. Şuekinci YılmazA. UluçamG. Novel N-benzyl-2-oxo-1,2-dihydrofuro [3,4-d]pyrimidine-3(4H)-carboxamide as anticancer agent: Synthesis, drug-likeness, ADMET profile, DFT and molecular modelling against EGFR target.Heliyon202391e1294810.1016/j.heliyon.2023.e1294836711281
    [Google Scholar]
  73. PucciB. KastenM. GiordanoA. Cell cycle and apoptosis.Neoplasia20002429129910.1038/sj.neo.790010111005563
    [Google Scholar]
  74. VigneswaraV. AhmedZ. The role of caspase-2 in regulating cell fate.Cells202095125910.3390/cells905125932438737
    [Google Scholar]
  75. YousefR.G. EldehnaW.M. ElwanA. AbdelazizA.S. MehanyA.B.M. GobaaraI.M.M. AlsfoukB.A. ElkaeedE.B. MetwalyA.M. EissaI.H. Design, Synthesis, in silico and in vitro studies of new immunomodulatory anticancer nicotinamide derivatives targeting VEGFR-2.Molecules20222713407910.3390/molecules2713407935807326
    [Google Scholar]
  76. ReddyV.G. ReddyT.S. JadalaC. ReddyM.S. SultanaF. AkunuriR. BhargavaS.K. WlodkowicD. SrihariP. KamalA. Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vivo transgenic zebrafish model.Eur. J. Med. Chem.201918211160910.1016/j.ejmech.2019.11160931445229
    [Google Scholar]
  77. Farasati FarB. Artificial intelligence ethics in precision oncology: balancing advancements in technology with patient privacy and autonomy.Explor. Target. Antitumor Ther.20234468568910.37349/etat.2023.0016037720345
    [Google Scholar]
  78. QureshiR. IrfanM. GondalT.M. KhanS. WuJ. HadiM.U. HeymachJ. LeX. YanH. AlamT. AI in drug discovery and its clinical relevance.Heliyon202397e1757510.1016/j.heliyon.2023.e1757537396052
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096307334240429050730
Loading
/content/journals/ccdt/10.2174/0115680096307334240429050730
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 3-Phenoxybenzoic acid; apoptosis; enzyme assay; in silico; pharmacophore; VEGFR-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test