Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Purpose

This study aimed to clarify the expression of a gene associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) in Upper Urinary Tract Urothelial Carcinoma (UUTUC) and its prognostic significance for UUTUC patients.

Materials and Methods

Immunohistochemical (IHC) staining was used to determine the GRIM-19 expression in 70 paired samples. Progression-Free Survival (PFS) and Cancer-Specific Survival (CSS) were assessed using the Kaplan-Meier method. The independent prognostic factors for PFS and CSS were analyzed by multivariable Cox regression models.

Results

IHC staining showed that GRIM-19 expression was significantly decreased in UUTUC, and its cellular location changed from being both cytoplasmic and nuclear to only cytoplasmic. Kaplan-Meier analysis revealed that the patients with tumors expressing low GRIM-19 had a significantly higher risk for tumor progression ( = 0.002) and cancer-specific mortality ( < 0.001) compared to those with high GRIM-19 levels. The Cox regression showed that both GRIM-19 expression ( = 0.025) and lymph node metastasis (LN) ( = 0.007) were independent predictors of progression in the muscle-invasive (MIC) subgroup. GRIM-19 expressions (entire cohort: = 0.011; MIC subgroup: = 0.025), LN (entire cohort: = 0.019; MIC subgroup: = 0.007), and progression (entire cohort: < 0.001; MIC subgroup: < 0.001) were independent predictors of cancer-specific survival.

Conclusion

Low expression of GRIM-19 in patients with UUTUC had significantly shorter PFS or CSS compared to those with high GRIM-19-expressing tumors. High GRIM-19 expression was also strongly associated with longer PFS in MIC patients. It indicates that GRIM-19 might serve as a promising prognostic biomarker for UUTUC patients.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096299093240516163839
2024-06-05
2025-06-19
Loading full text...

Full text loading...

References

  1. SoriaF. ShariatS.F. LernerS.P. FritscheH.M. RinkM. KassoufW. SpiessP.E. LotanY. YeD. FernándezM.I. KikuchiE. ChadeD.C. BabjukM. GrollmanA.P. ThalmannG.N. Epidemiology, diagnosis, preoperative evaluation and prognostic assessment of upper-tract urothelial carcinoma (UTUC).World J. Urol.201735337938710.1007/s00345‑016‑1928‑x27604375
    [Google Scholar]
  2. XylinasE. RinkM. ChaE.K. ClozelT. LeeR.K. FajkovicH. ComplojE. NovaraG. MargulisV. RamanJ.D. LotanY. KassoufW. FritscheH.M. WeizerA. Martinez-SalamancaJ.I. MatsumotoK. ZigeunerR. PychaA. ScherrD.S. SeitzC. WaltonT. TrinhQ.D. KarakiewiczP.I. MatinS. MontorsiF. ZerbibM. ShariatS.F. Upper Tract Urothelial Carcinoma Collaboration Impact of distal ureter management on oncologic outcomes following radical nephroureterectomy for upper tract urothelial carcinoma.Eur. Urol.201465121021710.1016/j.eururo.2012.04.05222579047
    [Google Scholar]
  3. OosterlinckW. SolsonaE. van der MeijdenA.P. SylvesterR. BöhleA. RintalaE. LobelB. European Association of Urology EAU guidelines on diagnosis and treatment of upper urinary tract transitional cell carcinoma.Eur. Urol.200446214715410.1016/j.eururo.2004.04.01115245806
    [Google Scholar]
  4. MunariE. FujitaK. FarajS. ChauxA. Gonzalez-RoibonN. HicksJ. MeekerA. NonomuraN. NettoG.J. Dysregulation of mammalian target of rapamycin pathway in upper tract urothelial carcinoma.Hum. Pathol.201344122668267610.1016/j.humpath.2013.07.00824074531
    [Google Scholar]
  5. KashiwagiE. FujitaK. YamaguchiS. FushimiH. IdeH. InoueS. MizushimaT. ReisL.O. SharmaR. NettoG.J. NonomuraN. MiyamotoH. Expression of steroid hormone receptors and its prognostic significance in urothelial carcinoma of the upper urinary tract.Cancer Biol. Ther.201617111188119610.1080/15384047.2016.123566727635763
    [Google Scholar]
  6. AbouassalyR. AlibhaiS.M.H. ShahN. TimilshinaN. FleshnerN. FinelliA. Troubling outcomes from population-level analysis of surgery for upper tract urothelial carcinoma.Urology201076489590110.1016/j.urology.2010.04.02020646743
    [Google Scholar]
  7. JiangS. TianF. WangQ. ChengW. WangL. WangY. SunW. High expression of spindle and kinetochore- associated protein 1 predicts early recurrence and progression of non-muscle invasive bladder cancer.Cancer Biomark.201822354354910.3233/CBM‑18120229865039
    [Google Scholar]
  8. RouprêtM. BabjukM. CompératE. ZigeunerR. SylvesterR.J. BurgerM. CowanN.C. GonteroP. Van RhijnB.W.G. MostafidA.H. PalouJ. ShariatS.F. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update.Eur. Urol.201873111112210.1016/j.eururo.2017.07.03628867446
    [Google Scholar]
  9. InoueS IdeH FujitaK Expression of phospho-ELK1 and its prognostic significance in urothelial carcinoma of the upper urinary tract.Int J Mol Sci.201881977710.3390/ijms19030777
    [Google Scholar]
  10. InoueS. MizushimaT. FujitaK. MelitiA. IdeH. YamaguchiS. FushimiH. NettoG.J. NonomuraN. MiyamotoH. GATA3 immunohistochemistry in urothelial carcinoma of the upper urinary tract as a urothelial marker and a prognosticator.Hum. Pathol.201764839010.1016/j.humpath.2017.04.00328428106
    [Google Scholar]
  11. NoroD. KoieT. HashimotoY. TanakaT. OhyamaC. TobisawaY. YoneyamaT. ImaiA. HatakeyamaS. YamamotoH. KitayamaM. HirotaK. Significance of preoperative butyrylcholinesterase level as an independent predictor of survival in patients with upper urinary tract urothelial carcinoma treated with nephroureterectomy.Jpn. J. Clin. Oncol.201848218418910.1093/jjco/hyx16829177431
    [Google Scholar]
  12. CoussensL.M. WerbZ. Inflammation and cancer.Nature2002420691786086710.1038/nature0132212490959
    [Google Scholar]
  13. KimB.H. YiE.H. YeS.K. Signal transducer and activator of transcription 3 as a therapeutic target for cancer and the tumor microenvironment.Arch. Pharm. Res.20163981085109910.1007/s12272‑016‑0795‑827515050
    [Google Scholar]
  14. OkamotoT. SandaT. AsamitsuK. NF-kappa B signaling and carcinogenesis.Curr. Pharm. Des.200713544746210.2174/13816120778016294417348842
    [Google Scholar]
  15. AngellJ.E. LindnerD.J. ShapiroP.S. HofmannE.R. KalvakolanuD.V. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach.J. Biol. Chem.200027543334163342610.1074/jbc.M00392920010924506
    [Google Scholar]
  16. KongD. ChenJ. SunX. LinY. DuY. HuangD. ChengH. HeP. YangL. WuS. ZhaoL. MengX. GRIM-19 over-expression represses the proliferation and invasion of orthotopically implanted hepatocarcinoma tumors associated with downregulation of Stat3 signaling.Biosci. Trends201913434235010.5582/bst.2019.0118531527330
    [Google Scholar]
  17. ZhangW. DuY. JiangT. GengW. YuanJ. ZhangD. Upregulation of GRIM-19 inhibits the growth and invasion of human breast cancer cells.Mol. Med. Rep.20151222919292510.3892/mmr.2015.375725955394
    [Google Scholar]
  18. LufeiC. MaJ. HuangG. ZhangT. Novotny-DiermayrV. OngC.T. CaoX. GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction.EMBO J.20032261325133510.1093/emboj/cdg13512628925
    [Google Scholar]
  19. ZhangJ. YangJ. RoyS.K. TinininiS. HuJ. BrombergJ.F. PoliV. StarkG.R. KalvakolanuD.V. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3.Proc. Natl. Acad. Sci. USA2003100169342934710.1073/pnas.163351610012867595
    [Google Scholar]
  20. YuH. PardollD. JoveR. STATs in cancer inflammation and immunity: a leading role for STAT3.Nat. Rev. Cancer200991179880910.1038/nrc273419851315
    [Google Scholar]
  21. ChaiE.Z.P. ShanmugamM.K. ArfusoF. DharmarajanA. WangC. KumarA.P. SamyR.P. LimL.H.K. WangL. GohB.C. AhnK.S. HuiK.M. SethiG. Targeting transcription factor STAT3 for cancer prevention and therapy.Pharmacol. Ther.2016162869710.1016/j.pharmthera.2015.10.00426478441
    [Google Scholar]
  22. TakedaK. KaishoT. YoshidaN. TakedaJ. KishimotoT. AkiraS. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice.J. Immunol.199816194652466010.4049/jimmunol.161.9.46529794394
    [Google Scholar]
  23. StarkG.R. DarnellJ.E.Jr The JAK-STAT pathway at twenty.Immunity201236450351410.1016/j.immuni.2012.03.01322520844
    [Google Scholar]
  24. YuH. LeeH. HerrmannA. BuettnerR. JoveR. Revisiting STAT3 signalling in cancer: new and unexpected biological functions.Nat. Rev. Cancer2014141173674610.1038/nrc381825342631
    [Google Scholar]
  25. WuN. HuiH. CuiL. YangF. GRIM-19 represses the proliferation and invasion of cutaneous squamous cell carcinoma cells associated with downregulation of STAT3 signaling.Biomed. Pharmacother.2017951169117610.1016/j.biopha.2017.09.05528926927
    [Google Scholar]
  26. MoreiraS. CorreiaM. SoaresP. MáximoV. GRIM-19 function in cancer development.Mitochondrion201111569369910.1016/j.mito.2011.05.01121664299
    [Google Scholar]
  27. BuX. ZhaoC. WangW. ZhangN. GRIM-19 inhibits the STAT3 signaling pathway and sensitizes gastric cancer cells to radiation.Gene2013512219820510.1016/j.gene.2012.10.05723124042
    [Google Scholar]
  28. BoroughsL.K. DeBerardinisR.J. Metabolic pathways promoting cancer cell survival and growth.Nat. Cell Biol.201517435135910.1038/ncb312425774832
    [Google Scholar]
  29. IsraelsenW.J. Vander HeidenM.G. Pyruvate kinase: Function, regulation and role in cancer.Semin. Cell Dev. Biol.201543435110.1016/j.semcdb.2015.08.00426277545
    [Google Scholar]
  30. ZahraK. DeyT. Ashish MishraS.P. PandeyU. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis.Front. Oncol.20201015910.3389/fonc.2020.0015932195169
    [Google Scholar]
  31. NallarS.C. KalvakolanuD.V. GRIM-19: A master regulator of cytokine induced tumor suppression, metastasis and energy metabolism.Cytokine Growth Factor Rev.20173311810.1016/j.cytogfr.2016.09.00127659873
    [Google Scholar]
  32. ZhangX.Y. LiM. SunK. ChenX.J. MengJ. WuL. ZhangP. TongX. JiangW.W. Decreased expression of GRIM-19 by DNA hypermethylation promotes aerobic glycolysis and cell proliferation in head and neck squamous cell carcinoma.Oncotarget20156110111510.18632/oncotarget.268425575809
    [Google Scholar]
  33. KalakondaS. NallarS.C. JaberS. KeayS.K. RorkeE. MunivenkatappaR. LindnerD.J. FiskumG.M. KalvakolanuD.V. Monoallelic loss of tumor suppressor GRIM-19 promotes tumorigenesis in mice.Proc. Natl. Acad. Sci. USA201311045E4213E422210.1073/pnas.130376011024145455
    [Google Scholar]
  34. WigerupC. PåhlmanS. BexellD. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer.Pharmacol. Ther.201616415216910.1016/j.pharmthera.2016.04.00927139518
    [Google Scholar]
  35. ZhangJ. ChuD. KawamuraT. TanakaK. HeS. GRIM‐19 repressed hypoxia‐induced invasion and EMT of colorectal cancer by repressing autophagy through inactivation of STAT3/HIF‐1α signaling axis.J. Cell. Physiol.20192348128001280810.1002/jcp.2791430537081
    [Google Scholar]
  36. CuiL. MengQ. WenJ. YanZ. GaoZ. TianY. XuP. LianP. YuH. The effect of a gene associated with retinoid-interferon-induced mortality 19 (GRIM-19) on STAT3-induced gene expression in renal carcinoma.J. Biochem.2018164428529410.1093/jb/mvy05229961871
    [Google Scholar]
  37. ZhangL. GaoL. LiY. LinG. ShaoY. JiK. YuH. HuJ. KalvakolanuD.V. KopeckoD.J. ZhaoX. XuD.Q. Effects of plasmid-based Stat3-specific short hairpin RNA and GRIM-19 on PC-3M tumor cell growth.Clin. Cancer Res.200814255956810.1158/1078‑0432.CCR‑07‑117618223232
    [Google Scholar]
  38. WangT. YanX.B. ZhaoJ.J. YeJ. JiangZ.F. WuD.R. XiaoW.H. LiuR.Y. Gene associated with retinoid–interferon-induced mortality-19 suppresses growth of lung adenocarcinoma tumor in vitro and in vivo. Lung Cancer201172328729310.1016/j.lungcan.2010.10.00121040996
    [Google Scholar]
  39. ZhouY. LiM. WeiY. FengD. PengC. WengH. MaY. BaoL. NallarS. KalakondaS. XiaoW. KalvakolanuD.V. LingB. Down-regulation of GRIM-19 expression is associated with hyperactivation of STAT3-induced gene expression and tumor growth in human cervical cancers.J. Interferon Cytokine Res.2009291069570410.1089/jir.2009.000319642906
    [Google Scholar]
  40. HaoM. ShuZ. SunH. SunR. WangY. LiuT. JiD. CongX. GRIM-19 expression is a potent prognostic marker in colorectal cancer.Hum. Pathol.201546121815182010.1016/j.humpath.2015.07.02026363526
    [Google Scholar]
  41. ZhangY. HaoH. ZhaoS. LiuQ. YuanQ. NiS. WangF. LiuS. WangL. HaoA. Downregulation of GRIM‐19 promotes growth and migration of human glioma cells.Cancer Sci.2011102111991199910.1111/j.1349‑7006.2011.02059.x21827581
    [Google Scholar]
  42. IlelisF. do AmaralN.S. AlvesM.R. da CostaA.A.B.A. CalsavaraV.F. LordelloL. De BrotL. SoaresF.A. RodriguesI.S.A. RochaR.M. Prognostic value of GRIM-19, NF-κB and IKK2 in patients with high-grade serous ovarian cancer.Pathol. Res. Pract.2018214218719410.1016/j.prp.2017.12.00229254797
    [Google Scholar]
  43. NiF. YanC. ZhouS. HuiP. DuY. ZhengL. YuJ. HuX. ZhangZ. Repression of GRIM19 expression potentiates cisplatin chemoresistance in advanced bladder cancer cells via disrupting ubiquitination-mediated Bcl-xL degradation.Cancer Chemother. Pharmacol.201882459360510.1007/s00280‑018‑3651‑330032449
    [Google Scholar]
  44. LiF. RenW. ZhaoY. FuZ. JiY. ZhuY. QinC. Downregulation of GRIM-19 is associated with hyperactivation of p-STAT3 in hepatocellular carcinoma.Med. Oncol.20122953046305410.1007/s12032‑012‑0234‑822492280
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096299093240516163839
Loading
/content/journals/ccdt/10.2174/0115680096299093240516163839
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test