Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

It is a well-known fact that cancer is considered the second leading cause of mortality across the globe. Although the human oral cavity and intestine are the natural habitat of thousands of microbes, dysbiosis results in malignancies, such as oral squamous cell carcinoma and colorectal cancer. Amongst the intestinal microbes, is a deadly carcinogen. Also, causative pathogens for the development of pancreatic and colorectal cancer are found in the oral cavity, such as and Many periodontopathic micro-organisms, like sp., sp., sp., sp., , and strongly have an impact on the development of oral cancers. Three basic mechanisms are involved in pathogen-mediated cancer development, like chronic inflammation-mediated angiogenesis, inhibition of cellular apoptosis, and release of carcinogenic by-products. Microbiota has a dichotomous role to play in cancer, microbiota can be used for cancer management too. Shreds of evidence are there to support the fact that microbiota enhances the chemotherapeutic drug efficacy. This review presents the possible mechanism of the oncogenic effect of microbiota with emphasis on the oral microbiome and also attempts to explain the intricate role of microbiota in cancer management.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096282503240124104029
2024-02-21
2024-11-23
Loading full text...

Full text loading...

References

  1. MonteroP.H. PatelS.G. Cancer of the oral cavity.Surgical Oncology Clinics201524349150825979396
    [Google Scholar]
  2. NagyK.N. SonkodiI. SzökeI. NagyE. NewmanH.N. The microflora associated with human oral carcinomas.Oral Oncol.199834430430810.1016/S1368‑8375(98)80012‑29813727
    [Google Scholar]
  3. IidaN. DzutsevA. StewartC.A. SmithL. BouladouxN. WeingartenR.A. MolinaD.A. SalcedoR. BackT. CramerS. DaiR.M. KiuH. CardoneM. NaikS. PatriA.K. WangE. MarincolaF.M. FrankK.M. BelkaidY. TrinchieriG. GoldszmidR.S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment.Science2013342616196797010.1126/science.124052724264989
    [Google Scholar]
  4. ViaudS. SaccheriF. MignotG. YamazakiT. DaillèreR. HannaniD. EnotD.P. PfirschkeC. EngblomC. PittetM.J. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science2013342971976
    [Google Scholar]
  5. WallaceB.D. WangH. LaneK.T. ScottJ.E. OransJ. KooJ.S. VenkateshM. JobinC. YehL.A. ManiS. RedinboM.R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.Science2010330600583183510.1126/science.119117521051639
    [Google Scholar]
  6. WargoJ.A. GolubT.R. StraussmanR. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine.Science2017357635611561160
    [Google Scholar]
  7. NautsH.C. The Beneficial Effects of Bacterial Infections on Host Resistance to Cancer End Results in 449 Cases: A Study and Abstracts of Reports in the World Medical Literature (1775-1980) and Personal Communications.Cancer Research Institute1980
    [Google Scholar]
  8. RichardsonM.A. RamirezT. RussellN.C. MoyeL.A. Coley toxins immunotherapy: A retrospective review.Altern. Ther. Health Med.199953424710234867
    [Google Scholar]
  9. ZacharskiL.R. SukhatmeV.P. Coley’s toxin revisited: Immunotherapy or plasminogen activator therapy of cancer?J. Thromb. Haemost.20053342442710.1111/j.1538‑7836.2005.01110.x15748226
    [Google Scholar]
  10. Hoption CannS.A. van NettenJ.P. van NettenC. Dr William Coley and tumour regression: A place in history or in the future.Postgrad. Med. J.20037993867268010.1093/postgradmedj/79.938.67214707241
    [Google Scholar]
  11. NautsH.C. McLarenJ.R. Coley toxins—the first century.Consensus on Hyperthermia for the 1990s.Springer199048350010.1007/978‑1‑4684‑5766‑7_52
    [Google Scholar]
  12. AlexanderJ.L. WilsonI.D. TeareJ. MarchesiJ.R. NicholsonJ.K. KinrossJ.M. Gut microbiota modulation of chemotherapy efficacy and toxicity.Nat. Rev. Gastroenterol. Hepatol.201714635636510.1038/nrgastro.2017.2028270698
    [Google Scholar]
  13. RoutyB. GopalakrishnanV. DaillèreR. ZitvogelL. WargoJ.A. KroemerG. The gut microbiota influences anticancer immunosurveillance and general health.Nat. Rev. Clin. Oncol.201815638239610.1038/s41571‑018‑0006‑229636538
    [Google Scholar]
  14. RoutyB. Le ChatelierE. DerosaL. DuongC.P.M. AlouM.T. DaillèreR. FluckigerA. MessaoudeneM. RauberC. RobertiM.P. FidelleM. FlamentC. Poirier-ColameV. OpolonP. KleinC. IribarrenK. MondragónL. JacquelotN. QuB. FerrereG. ClémensonC. MezquitaL. MasipJ.R. NaltetC. BrosseauS. KaderbhaiC. RichardC. RizviH. LevenezF. GalleronN. QuinquisB. PonsN. RyffelB. Minard-ColinV. GoninP. SoriaJ.C. DeutschE. LoriotY. GhiringhelliF. ZalcmanG. GoldwasserF. EscudierB. HellmannM.D. EggermontA. RaoultD. AlbigesL. KroemerG. ZitvogelL. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors.Science20183596371919710.1126/science.aan370629097494
    [Google Scholar]
  15. GopalakrishnanV. SpencerC.N. NeziL. ReubenA. AndrewsM.C. KarpinetsT.V. PrietoP.A. VicenteD. HoffmanK. WeiS.C. CogdillA.P. ZhaoL. HudgensC.W. HutchinsonD.S. ManzoT. Petaccia de MacedoM. CotechiniT. KumarT. ChenW.S. ReddyS.M. Szczepaniak SloaneR. Galloway-PenaJ. JiangH. ChenP.L. ShpallE.J. RezvaniK. AlousiA.M. ChemalyR.F. ShelburneS. VenceL.M. OkhuysenP.C. JensenV.B. SwennesA.G. McAllisterF. Marcelo Riquelme SanchezE. ZhangY. Le ChatelierE. ZitvogelL. PonsN. Austin-BrenemanJ.L. HayduL.E. BurtonE.M. GardnerJ.M. SirmansE. HuJ. LazarA.J. TsujikawaT. DiabA. TawbiH. GlitzaI.C. HwuW.J. PatelS.P. WoodmanS.E. AmariaR.N. DaviesM.A. GershenwaldJ.E. HwuP. LeeJ.E. ZhangJ. CoussensL.M. CooperZ.A. FutrealP.A. DanielC.R. AjamiN.J. PetrosinoJ.F. TetzlaffM.T. SharmaP. AllisonJ.P. JenqR.R. WargoJ.A. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients.Science201835963719710310.1126/science.aan423629097493
    [Google Scholar]
  16. MatsonV. FesslerJ. BaoR. ChongsuwatT. ZhaY. AlegreM.L. LukeJ.J. GajewskiT.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients.Science2018359637110410810.1126/science.aao329029302014
    [Google Scholar]
  17. PatyarS. JoshiR. ByravD.S.P. PrakashA. MedhiB. DasB.K. Bacteria in cancer therapy: A novel experimental strategy.J. Biomed. Sci.20101712110.1186/1423‑0127‑17‑2120331869
    [Google Scholar]
  18. RamanM. AmbalamP. KondepudiK.K. PithvaS. KothariC. PatelA.T. PuramaR.K. DaveJ.M. VyasB.R.M. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer.Gut Microbes20134318119210.4161/gmic.2391923511582
    [Google Scholar]
  19. OrlandiE. IacovelliN.A. TomboliniV. RancatiT. PolimeniA. De CeccoL. ValdagniR. De FeliceF. Potential role of microbiome in oncogenesis, outcome prediction and therapeutic targeting for head and neck cancer.Oral Oncol.20199910445310.1016/j.oraloncology.2019.10445331683170
    [Google Scholar]
  20. ParikhA.S. PuramS.V. FaquinW.C. RichmonJ.D. EmerickK.S. DeschlerD.G. VarvaresM.A. TiroshI. BernsteinB.E. LinD.T. Immunohistochemical quantification of partial-EMT in oral cavity squamous cell carcinoma primary tumors is associated with nodal metastasis.Oral Oncol.20199910445810.1016/j.oraloncology.2019.10445831704557
    [Google Scholar]
  21. LauritanoD. SbordoneL. NardoneM. IapichinoA. ScapoliL. CarinciF. Focus on periodontal disease and colorectal carcinoma.Oral Implantol.201710322923310.11138/orl/2017.10.3.22929285324
    [Google Scholar]
  22. Galvão-MoreiraL.V. da CruzM.C.F.N. Oral microbiome, periodontitis and risk of head and neck cancer.Oral Oncol.201653171910.1016/j.oraloncology.2015.11.01326684542
    [Google Scholar]
  23. KarpińskiT. Role of oral microbiota in cancer development.Microorganisms2019712010.3390/microorganisms701002030642137
    [Google Scholar]
  24. PereraM. Al-hebshiN.N. SpeicherD.J. PereraI. JohnsonN.W. Emerging role of bacteria in oral carcinogenesis: A review with special reference to perio-pathogenic bacteria.J. Oral Microbiol.2016813276210.3402/jom.v8.3276227677454
    [Google Scholar]
  25. ChattopadhyayI. VermaM. PandaM. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer.Technol. Cancer Res. Treat.20191810.1177/153303381986735431370775
    [Google Scholar]
  26. SasahiraT. KiritaT. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma.Int. J. Mol. Sci.2018198241310.3390/ijms1908241330115834
    [Google Scholar]
  27. BrennanC.A. GarrettW.S. Fusobacterium nucleatum — symbiont, opportunist and oncobacterium.Nat. Rev. Microbiol.201917315616610.1038/s41579‑018‑0129‑630546113
    [Google Scholar]
  28. AhnJ. ChenC.Y. HayesR.B. Oral microbiome and oral and gastrointestinal cancer risk.Cancer Causes Control201223339940410.1007/s10552‑011‑9892‑722271008
    [Google Scholar]
  29. ColottaF. AllavenaP. SicaA. GarlandaC. MantovaniA. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability.Carcinogenesis20093071073108110.1093/carcin/bgp12719468060
    [Google Scholar]
  30. FellerL. AltiniM. LemmerJ. Inflammation in the context of oral cancer.Oral Oncol.201349988789210.1016/j.oraloncology.2013.07.00323910564
    [Google Scholar]
  31. LiuY. MessadiD.V. WuH. HuS. Oral lichen planus is a unique disease model for studying chronic inflammation and oral cancer.Med. Hypotheses201075649249410.1016/j.mehy.2010.07.00220674185
    [Google Scholar]
  32. SongW. AnselmoA.C. HuangL. Nanotechnology intervention of the microbiome for cancer therapy.Nat. Nanotechnol.201914121093110310.1038/s41565‑019‑0589‑531802032
    [Google Scholar]
  33. KhajuriaN. MetgudR. Role of bacteria in oral carcinogenesis.Indian J. Dent.201561374310.4103/0975‑962X.15170925767359
    [Google Scholar]
  34. RiveraC. Essentials of oral cancer.Int. J. Clin. Exp. Pathol.201589118841189426617944
    [Google Scholar]
  35. GaoS. LiS. MaZ. LiangS. ShanT. ZhangM. ZhuX. ZhangP. LiuG. ZhouF. YuanX. JiaR. PotempaJ. ScottD.A. LamontR.J. WangH. FengX. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer.Infect. Agent. Cancer2016111310.1186/s13027‑016‑0049‑x26788120
    [Google Scholar]
  36. GaoS. BrownJ. WangH. FengX. The role of glycogen synthase kinase 3-β in immunity and cell cycle: implications in esophageal cancer.Arch. Immunol. Ther. Exp. (Warsz.)201462213114410.1007/s00005‑013‑0263‑924276788
    [Google Scholar]
  37. Di DomenicoM. GiovaneG. KouidhiS. IorioR. RomanoM. De FrancescoF. FeolaA. SicilianoC. CalifanoL. GiordanoA. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers.Cancer Biol. Ther.2018191085085710.1080/15384047.2017.131034928362190
    [Google Scholar]
  38. FlemerB. WarrenR.D. BarrettM.P. CisekK. DasA. JefferyI.B. HurleyE. O’RiordainM. ShanahanF. O’TooleP.W. The oral microbiota in colorectal cancer is distinctive and predictive.Gut20186781454146310.1136/gutjnl‑2017‑31481428988196
    [Google Scholar]
  39. KoliarakisI. MessaritakisI. NikolouzakisT.K. HamilosG. SouglakosJ. TsiaoussisJ. Oral bacteria and intestinal dysbiosis in colorectal cancer.Int. J. Mol. Sci.20192017414610.3390/ijms2017414631450675
    [Google Scholar]
  40. Al-HebshiN.N. BorgnakkeW.S. JohnsonN.W. The microbiome of oral squamous cell carcinomas: A functional perspective.Curr. Oral Health Rep.20196214516010.1007/s40496‑019‑0215‑5
    [Google Scholar]
  41. JiaG. ZhiA. LaiP.F.H. WangG. XiaY. XiongZ. ZhangH. CheN. AiL. The oral microbiota – A mechanistic role for systemic diseases.Br. Dent. J.2018224644745510.1038/sj.bdj.2018.21729569607
    [Google Scholar]
  42. KlimesovaK. Jiraskova ZakostelskaZ. Tlaskalova-HogenovaH. Oral bacterial and fungal microbiome impacts colorectal carcinogenesis.Front. Microbiol.2018977410.3389/fmicb.2018.0077429731748
    [Google Scholar]
  43. FlemerB. LynchD.B. BrownJ.M. JefferyI.B. RyanF.J. ClaessonM.J. O’RiordainM. ShanahanF. O’TooleP.W. Tumour-associated and non-tumour-associated microbiota in colorectal cancer.Gut201655463364326992426
    [Google Scholar]
  44. DejeaC.M. WickE.C. HechenbleiknerE.M. WhiteJ.R. Mark WelchJ.L. RossettiB.J. PetersonS.N. SnesrudE.C. BorisyG.G. LazarevM. SteinE. VadiveluJ. RoslaniA.C. MalikA.A. WanyiriJ.W. GohK.L. ThevambigaI. FuK. WanF. LlosaN. HousseauF. RomansK. WuX. McAllisterF.M. WuS. VogelsteinB. KinzlerK.W. PardollD.M. SearsC.L. Microbiota organization is a distinct feature of proximal colorectal cancers.Proc. Natl. Acad. Sci. USA201411151183211832610.1073/pnas.140619911125489084
    [Google Scholar]
  45. LiS. KonstantinovS.R. SmitsR. PeppelenboschM.P. Bacterial biofilms in colorectal cancer initiation and progression.Trends Mol. Med.2017231183010.1016/j.molmed.2016.11.00427986421
    [Google Scholar]
  46. JohnsonC.H. DejeaC.M. EdlerD. HoangL.T. SantidrianA.F. FeldingB.H. IvanisevicJ. ChoK. WickE.C. HechenbleiknerE.M. UritboonthaiW. GoetzL. CaseroR.A.Jr PardollD.M. WhiteJ.R. PattiG.J. SearsC.L. SiuzdakG. Metabolism links bacterial biofilms and colon carcinogenesis.Cell Metab.201521689189710.1016/j.cmet.2015.04.01125959674
    [Google Scholar]
  47. ZhangY. WangX. LiH. NiC. DuZ. YanF. Human oral microbiota and its modulation for oral health.Biomed. Pharmacother.20189988389310.1016/j.biopha.2018.01.14629710488
    [Google Scholar]
  48. SzkaradkiewiczA.K. KarpinskiT. Microbiology of chronic periodontitis.J. Biol. Earth Sci.201331420
    [Google Scholar]
  49. KonopkaŁ. Brzezińska-BłaszczykE. Cytokines in gingival crevicular fluid as potential diagnostic and prognostic markers of periodontitis.Dent. Med. Probl.201047206213
    [Google Scholar]
  50. CarmiY. DotanS. RiderP. KaplanovI. WhiteM.R. BaronR. AbutbulS. HuszarM. DinarelloC.A. ApteR.N. VoronovE. The role of IL-1β in the early tumor cell-induced angiogenic response.J. Immunol.201319073500350910.4049/jimmunol.120276923475218
    [Google Scholar]
  51. VoronovE. ShouvalD.S. KrelinY. CagnanoE. BenharrochD. IwakuraY. DinarelloC.A. ApteR.N. IL-1 is required for tumor invasiveness and angiogenesis.Proc. Natl. Acad. Sci. USA200310052645265010.1073/pnas.043793910012598651
    [Google Scholar]
  52. WongS.H.M. FangC.M. ChuahL.H. LeongC.O. NgaiS.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications.Crit. Rev. Oncol. Hematol.2018121112210.1016/j.critrevonc.2017.11.01029279096
    [Google Scholar]
  53. WangF. LiuH. LiuS. TangS. YangL. FengG. SHP-2 promoting migration and metastasis of MCF-7 with loss of E-cadherin, dephosphorylation of FAK and secretion of MMP-9 induced by IL-1? in vivo and in vitro.Breast Cancer Res. Treat.200589151410.1007/s10549‑004‑1002‑z15666191
    [Google Scholar]
  54. HauraE.B. TurksonJ. JoveR. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer.Nat. Clin. Pract. Oncol.20052631532410.1038/ncponc019516264989
    [Google Scholar]
  55. KossakowskaA.E. EdwardsD.R. PrusinkiewiczC. ZhangM.C. GuoD. UrbanskiS.J. GroganT. MarquezL.A. Janowska-WieczorekA. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin’s lymphomas.Blood19999462080208910.1182/blood.V94.6.208010477738
    [Google Scholar]
  56. LeberT.M. BalkwillF.R. Regulation of monocyte MMP-9 production by TNF-α and a tumour-derived soluble factor (MMPSF).Br. J. Cancer199878672473210.1038/bjc.1998.5689743290
    [Google Scholar]
  57. YoshidaS. OnoM. ShonoT. IzumiH. IshibashiT. SuzukiH. KuwanoM. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis.Mol. Cell. Biol.19971774015402310.1128/MCB.17.7.40159199336
    [Google Scholar]
  58. LandskronG. De la FuenteM. ThuwajitP. ThuwajitC. HermosoM.A. Chronic inflammation and cytokines in the tumor microenvironment.J. Immunol. Res.2014201410.1155/2014/149185
    [Google Scholar]
  59. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.514923991888
    [Google Scholar]
  60. AbranchesJ. ZengL. KajfaszJ.K. PalmerS. ChakrabortyB. WenZ. RichardsV.P. BradyL.J. LemosJ.A. Biology of Oral Streptococci.Gram-Positive Pathogens2019426434
    [Google Scholar]
  61. KoczorowskiR. KarpińskiM. Halitosis–problem społeczny.Nowiny lek200170657664
    [Google Scholar]
  62. MilellaL. The negative effects of volatile sulphur compounds.J. Vet. Dent.20153229910210.1177/08987564150320020326415386
    [Google Scholar]
  63. Attene-RamosM.S. WagnerE.D. PlewaM.J. GaskinsH.R. Evidence that hydrogen sulfide is a genotoxic agent.Mol. Cancer Res.20064191410.1158/1541‑7786.MCR‑05‑012616446402
    [Google Scholar]
  64. HellmichM.R. SzaboC. Hydrogen sulfide and cancer.Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide.Springer201523324110.1007/978‑3‑319‑18144‑8_12
    [Google Scholar]
  65. PavlovaS.I. JinL. GasparovichS.R. TaoL. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.Microbiology2013159Pt_71437144610.1099/mic.0.066258‑023637459
    [Google Scholar]
  66. MeurmanJ.H. UittamoJ. Oral micro-organisms in the etiology of cancer.Acta Odontol. Scand.200866632132610.1080/0001635080244652718821087
    [Google Scholar]
  67. MellmanI. CoukosG. DranoffG. Cancer immunotherapy comes of age.Nature2011480737848048910.1038/nature1067322193102
    [Google Scholar]
  68. BadgettM.R. AuerA. CarmichaelL.E. ParrishC.R. BullJ.J. Evolutionary dynamics of viral attenuation.J. Virol.20027620105241052910.1128/JVI.76.20.10524‑10529.200212239331
    [Google Scholar]
  69. AnsiauxR. GallezB. Use of botulinum toxins in cancer therapy.Expert Opin. Investig. Drugs200716220921810.1517/13543784.16.2.20917243940
    [Google Scholar]
  70. ZhaoC.-M. HayakawaY. KodamaY. MuthupalaniS. WestphalenC.B. AndersenG.T. FlatbergA. JohannessenH. FriedmanR.A. RenzB.W. Denervation suppresses gastric tumorigenesis.Sci. Transl. Med.20146250ra11510.1126/scitranslmed.3009569
    [Google Scholar]
  71. SalantiA. ClausenT.M. AgerbækM.Ø. Al NakouziN. DahlbäckM. OoH.Z. LeeS. GustavssonT. RichJ.R. HedbergB.J. MaoY. BaringtonL. PereiraM.A. LoBelloJ. EndoM. FazliL. SodenJ. WangC.K. SanderA.F. DagilR. ThraneS. HolstP.J. MengL. FaveroF. WeissG.J. NielsenM.A. FreethJ. NielsenT.O. ZaiaJ. TranN.L. TrentJ. BabcookJ.S. TheanderT.G. SorensenP.H. DaugaardM. Targeting human cancer by a glycosaminoglycan binding malaria protein.Cancer Cell201528450051410.1016/j.ccell.2015.09.00326461094
    [Google Scholar]
  72. StaedtkeV. BaiR.Y. SunW. HuangJ. KiblerK.K. TylerB.M. GalliaG.L. KinzlerK. VogelsteinB. ZhouS. RigginsG.J. Clostridium novyi -NT can cause regression of orthotopically implanted glioblastomas in rats.Oncotarget2015685536554610.18632/oncotarget.362725849940
    [Google Scholar]
  73. FelgnerS. KocijancicD. FrahmM. WeissS. Bacteria in cancer therapy: Renaissance of an old concept.Available from: https://www.hindawi.com/journals/ijmicro/2016/8451728/
  74. FelfoulO. MohammadiM. TaherkhaniS. de LanauzeD. Zhong XuY. LoghinD. EssaS. JancikS. HouleD. LafleurM. GabouryL. TabrizianM. KaouN. AtkinM. VuongT. BatistG. BeaucheminN. RadziochD. MartelS. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions.Nat. Nanotechnol.2016111194194710.1038/nnano.2016.13727525475
    [Google Scholar]
  75. WangY. GuoW. WuX. ZhangY. MannionC. BrouchkovA. ManY.G. ChenT. Oncolytic bacteria and their potential role in bacterium-mediated tumour therapy: A conceptual analysis.J. Cancer201910194442445410.7150/jca.3564831528208
    [Google Scholar]
  76. LiangK. LiuQ. LiP. LuoH. WangH. KongQ. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy.Cancer Lett.201944816818110.1016/j.canlet.2019.01.03730753837
    [Google Scholar]
  77. OlivieriC. NanniL. De GaetanoA.M. ManganaroL. PintusC. Complete resolution of retroperitoneal lymphangioma with a single trial of OK-432 in an infant.Pediatr. Neonatol.201657324024310.1016/j.pedneo.2013.06.01124140312
    [Google Scholar]
  78. DrollerM.J. Intracavitary bacillus calmette-guérin for superficial bladder tumors.J. Urol.20171972SS146S14710.1016/j.juro.2016.10.08328010983
    [Google Scholar]
  79. StaedtkeV. RobertsN.J. BaiR.Y. ZhouS. Clostridium novyi-NT in cancer therapy.Genes Dis.20163214415210.1016/j.gendis.2016.01.00330258882
    [Google Scholar]
  80. BazylinskiD.A. WilliamsT.J. LefèvreC.T. BergR.J. ZhangC.L. BowserS.S. DeanA.J. BeveridgeT.J. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria.Int. J. Syst. Evol. Microbiol.201363Pt_380180810.1099/ijs.0.038927‑022581902
    [Google Scholar]
  81. DimitriadisE. The use of malaria glycosaminoglycan to block cancers—lessons from the human placenta.Transl. Cancer Res.20165S6S1085S108710.21037/tcr.2016.11.38
    [Google Scholar]
  82. PyoK.H. JungB.K. XinC.F. LeeY.W. ChaiJ.Y. ShinE.H. Prominent IL-12 production and tumor reduction in athymic nude mice after Toxoplasma gondii lysate antigen treatment.Korean J. Parasitol.201452660561210.3347/kjp.2014.52.6.60525548411
    [Google Scholar]
  83. BeretaM. HayhurstA. GajdaM. ChorobikP. TargoszM. MarcinkiewiczJ. KaufmanH.L. Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies.Vaccine200725214183419210.1016/j.vaccine.2007.03.00817399861
    [Google Scholar]
  84. ParvezS. MalikK.A. Ah KangS. KimH.Y. Probiotics and their fermented food products are beneficial for health.J. Appl. Microbiol.200610061171118510.1111/j.1365‑2672.2006.02963.x16696665
    [Google Scholar]
  85. AgarwalK. Alarcon-SegoviaD. BourgesH. CraneJ. BrancaF. Garcia-ArandaA. GuarnerF. KruegerJ. MartinF. Moreno-EspinosaS. Fermented foods and healthy digestive functions.2001
    [Google Scholar]
  86. LeeJ.W. ShinJ.G. KimE.H. KangH.E. YimI.B. KimJ.Y. JooH.G. WooH.J. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum.J. Vet. Sci.200451414810.4142/jvs.2004.5.1.4115028884
    [Google Scholar]
  87. MurchS.H. Toll of allergy reduced by probiotics.Lancet200135792621057105910.1016/S0140‑6736(00)04305‑111297952
    [Google Scholar]
  88. IsolauriE. Dietary modification of atopic disease: Use of probiotics in the prevention of atopic dermatitis.Curr. Allergy Asthma Rep.20044427027510.1007/s11882‑004‑0070‑915175140
    [Google Scholar]
  89. SaikaliJ. PicardC. FreitasM. HoltP. Fermented milks, probiotic cultures, and colon cancer.Nutr. Cancer2004491142410.1207/s15327914nc4901_315456631
    [Google Scholar]
  90. GoldinB.R. GualtieriL.J. MooreR.P. The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat.Nutr. Cancer199625219720410.1080/016355896095144428710689
    [Google Scholar]
  91. OrrhageK. BrismarB. NordC.E. Effect of supplements with bifidobacterium longum and lactobacillus acidophilus on the intestinal microbiota during administration of clindamycin.Microb. Ecol. Health Dis.199471725
    [Google Scholar]
  92. AsoY. AkazanH. BLP Study Group Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer.Urol. Int.199249312512910.1159/0002824091466089
    [Google Scholar]
  93. HibberdA.A. LyraA. OuwehandA.C. RolnyP. LindegrenH. CedgårdL. WettergrenY. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention.BMJ Open Gastroenterol.201741e00014510.1136/bmjgast‑2017‑00014528944067
    [Google Scholar]
  94. YangY. XiaY. ChenH. HongL. FengJ. YangJ. YangZ. ShiC. WuW. GaoR. WeiQ. QinH. MaY. The effect of perioperative probiotics treatment for colorectal cancer: Short-term outcomes of a randomized controlled trial.Oncotarget2016778432844010.18632/oncotarget.704526824990
    [Google Scholar]
  95. PanebiancoC. AndriulliA. PazienzaV. Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies.Microbiome2018619210.1186/s40168‑018‑0483‑729789015
    [Google Scholar]
  96. MarkowiakP. ŚliżewskaK. Effects of probiotics, prebiotics, and synbiotics on human health.Nutrients201799102110.3390/nu909102128914794
    [Google Scholar]
  97. PanebiancoC. AdambergK. AdambergS. SaracinoC. JaaguraM. KolkK. Di ChioA. GrazianoP. ViluR. PazienzaV. Engineered resistant-starch (ERS) diet shapes colon microbiota profile in parallel with the retardation of tumor growth in in vitro and in vivo pancreatic cancer models.Nutrients20179433110.3390/nu904033128346394
    [Google Scholar]
  98. FunkM.A. BakerD.H. Effect of fiber, protein source and time of feeding on methotrexate toxicity in rats.J. Nutr.1991121101673168310.1093/jn/121.10.16731662714
    [Google Scholar]
  99. HelminkB.A. KhanM.A.W. HermannA. GopalakrishnanV. WargoJ.A. The microbiome, cancer, and cancer therapy.Nat. Med.201925337738810.1038/s41591‑019‑0377‑730842679
    [Google Scholar]
  100. PicardoS.L. CoburnB. HansenA.R. The microbiome and cancer for clinicians.Crit. Rev. Oncol. Hematol.201914111210.1016/j.critrevonc.2019.06.00431202124
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096282503240124104029
Loading
/content/journals/ccdt/10.2174/0115680096282503240124104029
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test