Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

DNA methylation is a key epigenetic modifier involved in tumor formation, invasion, and metastasis. The development of breast cancer is a complex process, and many studies have now confirmed the involvement of DNA methylation in breast cancer. Moreover, the number of genes identified as aberrantly methylated in breast cancer is rapidly increasing, and the accumulation of epigenetic alterations becomes a chronic factor in the development of breast cancer. The combined effects of external environmental factors and the internal tumor microenvironment promote epigenetic alterations that drive tumorigenesis. This article focuses on the relevance of DNA methylation to breast cancer, describing the role of detecting DNA methylation in the early diagnosis, prediction, progression, metastasis, treatment, and prognosis of breast cancer, as well as recent advances. The reversibility of DNA methylation is utilized to target specific methylation aberrant promoters as well as related enzymes, from early prevention to late targeted therapy, to understand the journey of DNA methylation in breast cancer with a more comprehensive perspective. Meanwhile, methylation inhibitors in combination with other therapies have a wide range of prospects, providing hope to drug-resistant breast cancer patients.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096278978240204162353
2024-03-01
2024-12-03
Loading full text...

Full text loading...

References

  1. ThakurC. QiuY. FuY. BiZ. ZhangW. JiH. ChenF. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies.Front. Oncol.20221297128810.3389/fonc.2022.97128836185256
    [Google Scholar]
  2. ParkM. KimD. KoS. KimA. MoK. YoonH. Breast cancer metastasis: Mechanisms and therapeutic implications.Int. J. Mol. Sci.20222312680610.3390/ijms2312680635743249
    [Google Scholar]
  3. HuoQ. WangJ. XieN. High HSPB1 expression predicts poor clinical outcomes and correlates with breast cancer metastasis.BMC Cancer202323150110.1186/s12885‑023‑10983‑337268925
    [Google Scholar]
  4. LoyferN. MagenheimJ. PeretzA. CannG. BrednoJ. KlochendlerA. Fox-FisherI. Shabi-PoratS. HechtM. PeletT. MossJ. DrawshyZ. AminiH. MoradiP. NagarajuS. BaumanD. ShveikyD. PoratS. DiorU. RivkinG. OrO. HirshorenN. CarmonE. PikarskyA. KhalailehA. ZamirG. GrinbaumR. Abu GazalaM. MizrahiI. ShussmanN. KorachA. WaldO. IzharU. ErezE. YutkinV. SametY. Rotnemer GolinkinD. SpaldingK.L. DruidH. ArnerP. ShapiroA.M.J. GrompeM. AravanisA. VennO. JamshidiA. ShemerR. DorY. GlaserB. KaplanT. A DNA methylation atlas of normal human cell types.Nature2023613794335536410.1038/s41586‑022‑05580‑636599988
    [Google Scholar]
  5. SavianaM. LeP. MicaloL. Del Valle-MoralesD. RomanoG. AcunzoM. LiH. Nana-SinkamP. Crosstalk between miRNAs and DNA methylation in Cancer.Genes2023145107510.3390/genes1405107537239435
    [Google Scholar]
  6. LiuY. LengP. LiuY. GuoJ. ZhouH. Crosstalk between methylation and ncRNAs in breast cancer: Therapeutic and diagnostic implications.Int. J. Mol. Sci.202223241575910.3390/ijms23241575936555400
    [Google Scholar]
  7. NishiyamaA. NakanishiM. Navigating the DNA methylation landscape of cancer.Trends Genet.202137111012102710.1016/j.tig.2021.05.00234120771
    [Google Scholar]
  8. MaL. LiC. YinH. HuangJ. YuS. ZhaoJ. TangY. YuM. LinJ. DingL. CuiQ. The mechanism of DNA Methylation and miRNA in breast cancer.Int. J. Mol. Sci.20232411936010.3390/ijms2411936037298314
    [Google Scholar]
  9. SharmaS. KellyT.K. JonesP.A. Epigenetics in cancer.Carcinogenesis2010311273610.1093/carcin/bgp22019752007
    [Google Scholar]
  10. LiL. LiS. QinS. GaoY. WangC. DuJ. ZhangN. ChenY. HanZ. YuY. WangF. ZhaoY. Diet, sports, and psychological stress as modulators of breast cancer risk: Focus on OPRM1 methylation.Front. Nutr.2021874796410.3389/fnut.2021.74796435024367
    [Google Scholar]
  11. RuscitoI. GasparriM.L. De MarcoM.P. CostanziF. BesharatA.R. PapadiaA. KuehnT. GentiliniO.D. BellatiF. CasertaD. The clinical and pathological profile of BRCA1 gene methylated breast cancer women: A meta-analysis.Cancers2021136139110.3390/cancers1306139133808555
    [Google Scholar]
  12. SelliC. TurnbullA.K. PearceD.A. LiA. FernandoA. WillsJ. RenshawL. ThomasJ.S. DixonJ.M. SimsA.H. Molecular changes during extended neoadjuvant letrozole treatment of breast cancer: distinguishing acquired resistance from dormant tumours.Breast Cancer Res.2019211210.1186/s13058‑018‑1089‑530616553
    [Google Scholar]
  13. FlorathI. ButterbachK. MüllerH. Bewerunge-HudlerM. BrennerH. Cross-sectional and longitudinal changes in DNA methylation with age: An epigenome-wide analysis revealing over 60 novel age-associated CpG sites.Hum. Mol. Genet.20142351186120110.1093/hmg/ddt53124163245
    [Google Scholar]
  14. RozenblitM. HofstatterE. LiuZ. O’MearaT. StornioloA.M. DalelaD. SinghV. PusztaiL. LevineM. Evidence of accelerated epigenetic aging of breast tissues in patients with breast cancer is driven by CpGs associated with polycomb-related genes.Clin. Epigenetics20221413010.1186/s13148‑022‑01249‑z35209953
    [Google Scholar]
  15. SiddigA. Tengku DinT.A.D.A.A. Mohd NafiS.N. YahyaM.M. SulongS. RahmanW.H.W.F. The unique biology behind the early onset of breast cancer.Genes202112337210.3390/genes1203037233807872
    [Google Scholar]
  16. OltraS.S. Peña-ChiletM. Vidal-TomasV. FlowerK. MartinezM.T. AlonsoE. BurguesO. LluchA. FlanaganJ.M. RibasG. Methylation deregulation of miRNA promoters identifies miR124-2 as a survival biomarker in Breast Cancer in very young women.Sci. Rep.2018811437310.1038/s41598‑018‑32393‑330258192
    [Google Scholar]
  17. NguyenN.M. de Oliveira AndradeF. JinL. ZhangX. MaconM. CruzM.I. BenitezC. WehrenbergB. YinC. WangX. XuanJ. de AssisS. Hilakivi-ClarkeL. Maternal intake of high n-6 polyunsaturated fatty acid diet during pregnancy causes transgenerational increase in mammary cancer risk in mice.Breast Cancer Res.20171917710.1186/s13058‑017‑0866‑x28673325
    [Google Scholar]
  18. PierobonM. FrankenfeldC.L. Obesity as a risk factor for triple-negative breast cancers: A systematic review and meta-analysis.Breast Cancer Res. Treat.2013137130731410.1007/s10549‑012‑2339‑323179600
    [Google Scholar]
  19. PangY. WeiY. KartsonakiC. Associations of adiposity and weight change with recurrence and survival in breast cancer patients: A systematic review and meta-analysis.Breast Cancer202229457558810.1007/s12282‑022‑01355‑z35579841
    [Google Scholar]
  20. XiongZ. LiX. YangL. WuL. XieY. XuF. XieX. Integrative analysis of gene expression and DNA methylation depicting the impact of obesity on breast cancer.Front. Cell Dev. Biol.20221081808210.3389/fcell.2022.81808235350384
    [Google Scholar]
  21. DonovanM.G. WrenS.N. CenkerM. SelminO.I. RomagnoloD.F. Dietary fat and obesity as modulators of breast cancer risk: Focus on DNA methylation.Br. J. Pharmacol.202017761331135010.1111/bph.1489131691272
    [Google Scholar]
  22. MetovicJ. BorellaF. D’AlonzoM. BigliaN. MangheriniL. TampieriC. BerteroL. CassoniP. CastellanoI. FOXA1 in breast cancer: A luminal marker with promising prognostic and predictive impact.Cancers20221419469910.3390/cancers1419469936230619
    [Google Scholar]
  23. RangelN. FortunatiN. Osella-AbateS. AnnaratoneL. IsellaC. CatalanoM.G. RinellaL. MetovicJ. BoldoriniR. BalmativolaD. FerrandoP. MaranoF. CassoniP. SapinoA. CastellanoI. FOXA1 and AR in invasive breast cancer: New findings on their co-expression and impact on prognosis in ER-positive patients.BMC Cancer201818170310.1186/s12885‑018‑4624‑y29970021
    [Google Scholar]
  24. GongC. FujinoK. MonteiroL.J. GomesA.R. DrostR. Davidson-SmithH. TakedaS. KhooU.S. JonkersJ. SproulD. LamE.W-F. FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer.Oncogene201534395012502410.1038/onc.2014.42125531315
    [Google Scholar]
  25. BasreeM.M. ShindeN. KoivistoC. CuitinoM. KladneyR. ZhangJ. StephensJ. PalettasM. ZhangA. KimH.K. Acero-BedoyaS. TrimboliA. StoverD.G. LudwigT. GanjuR. WengD. ShieldsP. FreudenheimJ. LeoneG.W. SizemoreG.M. MajumderS. RamaswamyB. Abrupt involution induces inflammation, estrogenic signaling, and hyperplasia linking lack of breastfeeding with increased risk of breast cancer.Breast Cancer Res.20192118010.1186/s13058‑019‑1163‑731315645
    [Google Scholar]
  26. AmbrosoneC.B. HigginsM.J. Relationships between breast feeding and breast cancer subtypes: Lessons learned from studies in humans and in mice.Cancer Res.202080224871487710.1158/0008‑5472.CAN‑20‑007732816853
    [Google Scholar]
  27. McCulloughL.E. CollinL.J. ConwayK. WhiteA.J. ChoY.H. ShantakumarS. TerryM.B. TeitelbaumS.L. NeugutA.I. SantellaR.M. ChenJ. GammonM.D. Reproductive characteristics are associated with gene-specific promoter methylation status in breast cancer.BMC Cancer201919192610.1186/s12885‑019‑6120‑431533668
    [Google Scholar]
  28. SahayD. TerryM.B. MillerR. Is breast cancer a result of epigenetic responses to traffic-related air pollution? A review of the latest evidence.Epigenomics201911670171410.2217/epi‑2018‑015831070457
    [Google Scholar]
  29. CallahanC.L. BonnerM.R. NieJ. HanD. WangY. TaoM.H. ShieldsP.G. MarianC. EngK.H. TrevisanM. BeyeaJ. FreudenheimJ.L. Lifetime exposure to ambient air pollution and methylation of tumor suppressor genes in breast tumors.Environ. Res.201816141842410.1016/j.envres.2017.11.04029197760
    [Google Scholar]
  30. RitonjaJ.A. AronsonK.J. FlatenL. TopouzaD.G. DuanQ.L. DurocherF. TranmerJ.E. BhattiP. Exploring the impact of night shift work on methylation of circadian genes.Epigenetics202217101259126810.1080/15592294.2021.200999734825628
    [Google Scholar]
  31. XiangS. DauchyR.T. HoffmanA.E. PointerD. FraschT. BlaskD.E. HillS.M. Epigenetic inhibition of the tumor suppressor ARHI by light at night-induced circadian melatonin disruption mediates STAT3-driven paclitaxel resistance in breast cancer.J. Pineal Res.2019672e1258610.1111/jpi.1258631077613
    [Google Scholar]
  32. ZubidatA.E. FaresB. FaresF. HaimA. Artificial light at night of different spectral compositions differentially affects tumor growth in mice: Interaction with melatonin and epigenetic pathways.Cancer Contr.201825110.1177/107327481881290830477310
    [Google Scholar]
  33. GillmanA.S. HelmuthT. KoljackC.E. HutchisonK.E. KohrtW.M. BryanA.D. The effects of exercise duration and intensity on breast cancer-related DNA methylation: A randomized controlled trial.Cancers20211316412810.3390/cancers1316412834439282
    [Google Scholar]
  34. ZhouX. YuL. WangL. XiaoJ. SunJ. ZhouY. XuX. XuW. SpiliopoulouA. TimofeevaM. ZhangX. HeY. YangH. CampbellH. ZhangB. ZhuY. TheodoratouE. LiX. Alcohol consumption, blood DNA methylation and breast cancer: A Mendelian randomisation study.Eur. J. Epidemiol.202237770171210.1007/s10654‑022‑00886‑135708873
    [Google Scholar]
  35. RahmanM.M. BraneA.C. TollefsbolT.O. MicroRNAs and epigenetics strategies to reverse breast cancer.Cells2019810121410.3390/cells810121431597272
    [Google Scholar]
  36. AcetoN. BardiaA. MiyamotoD.T. DonaldsonM.C. WittnerB.S. SpencerJ.A. YuM. PelyA. EngstromA. ZhuH. BranniganB.W. KapurR. StottS.L. ShiodaT. RamaswamyS. TingD.T. LinC.P. TonerM. HaberD.A. MaheswaranS. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis.Cell201415851110112210.1016/j.cell.2014.07.01325171411
    [Google Scholar]
  37. GkountelaS. Castro-GinerF. SzczerbaB.M. VetterM. LandinJ. ScherrerR. KrolI. ScheidmannM.C. BeiselC. StirnimannC.U. KurzederC. Heinzelmann-SchwarzV. RochlitzC. WeberW.P. AcetoN. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding.Cell20191761-298112.e1410.1016/j.cell.2018.11.04630633912
    [Google Scholar]
  38. LuoJ. ChenS. ChenJ. ZhouY. HeF. WangE. Identification and validation of DNA methylation markers to predict axillary lymph node metastasis of breast cancer.PLoS One20221712e027827010.1371/journal.pone.027827036454866
    [Google Scholar]
  39. StelzerK. Epidemiology and prognosis of brain metastases.Surg. Neurol. Int.20134519210.4103/2152‑7806.11129623717790
    [Google Scholar]
  40. IvanovaM. PortaF.M. GiuglianoF. FrascarelliC. SajjadiE. VenetisK. CursanoG. MazzarolG. Guerini-RoccoE. CuriglianoG. CriscitielloC. FuscoN. Breast cancer with brain metastasis: Molecular insights and clinical management.Genes2023146116010.3390/genes1406116037372340
    [Google Scholar]
  41. BarciszewskaA.M. Global DNA demethylation as an epigenetic marker of human brain metastases.Biosci. Rep.2018385BSR2018073110.1042/BSR2018073130254100
    [Google Scholar]
  42. ZeisbergM. NeilsonE.G. Biomarkers for epithelial-mesenchymal transitions.J. Clin. Invest.200911961429143710.1172/JCI3618319487819
    [Google Scholar]
  43. ButlerC. SprowlsS. SzalaiG. ArsiwalaT. SaralkarP. StraightB. HatcherS. TyreeE. YostM. KohlerW.J. WolffB. PutnamE. LockmanP. LiuT. Hypomethylating agent azacitidine is effective in treating brain metastasis triple-negative breast cancer through regulation of DNA methylation of keratin 18 gene.Transl. Oncol.202013610077510.1016/j.tranon.2020.10077532408199
    [Google Scholar]
  44. LehmannB.D. PietenpolJ.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes.J. Pathol.2014232214215010.1002/path.428024114677
    [Google Scholar]
  45. PetoR. DaviesC. GodwinJ. GrayR. PanH.C. ClarkeM. CutterD. DarbyS. McGaleP. TaylorC. WangY.C. BerghJ. Di LeoA. AlbainK. SwainS. PiccartM. PritchardK. Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100 000 women in 123 randomised trials.Lancet2012379981443244410.1016/S0140‑6736(11)61625‑522152853
    [Google Scholar]
  46. YuJ. ZayasJ. QinB. WangL. Targeting DNA methylation for treating triple-negative breast cancer.Pharmacogenomics201920161151115710.2217/pgs‑2019‑007831755366
    [Google Scholar]
  47. SharmaM. AroraI. ChenM. WuH. CrowleyM.R. TollefsbolT.O. LiY. Therapeutic effects of dietary soybean genistein on triple-negative breast cancer via regulation of epigenetic mechanisms.Nutrients20211311394410.3390/nu1311394434836197
    [Google Scholar]
  48. RollJ.D. RivenbarkA.G. SandhuR. ParkerJ.S. JonesW.D. CareyL.A. LivasyC.A. ColemanW.B. Dysregulation of the epigenome in triple-negative breast cancers: Basal-like and claudin-low breast cancers express aberrant DNA hypermethylation.Exp. Mol. Pathol.201395327628710.1016/j.yexmp.2013.09.00124045095
    [Google Scholar]
  49. Segura-PachecoB. Perez-CardenasE. Taja-ChayebL. Chavez-BlancoA. Revilla-VazquezA. Benitez-BribiescaL. Duenas-GonzálezA. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine.J. Transl. Med.2006413210.1186/1479‑5876‑4‑3216893460
    [Google Scholar]
  50. YuJ. QinB. MoyerA.M. NowsheenS. LiuT. QinS. ZhuangY. LiuD. LuS.W. KalariK.R. VisscherD.W. CoplandJ.A. McLaughlinS.A. Moreno-AspitiaA. NorthfeltD.W. GrayR.J. LouZ. SumanV.J. WeinshilboumR. BougheyJ.C. GoetzM.P. WangL. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine.J. Clin. Invest.201812862376238810.1172/JCI9792429708513
    [Google Scholar]
  51. GajulapalliV.N.R. MalisettyV.L. ChittaS.K. ManavathiB. Oestrogen receptor negativity in breast cancer: A cause or consequence?Biosci. Rep.2016366e0043210.1042/BSR2016022827884978
    [Google Scholar]
  52. JangM.H. KimH.J. KimE.J. ChungY.R. ParkS.Y. Expression of epithelial-mesenchymal transition–related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome.Hum. Pathol.20154691267127410.1016/j.humpath.2015.05.01026170011
    [Google Scholar]
  53. SuY. HopfingerN.R. NguyenT.D. PogashT.J. Santucci-PereiraJ. RussoJ. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors.J. Exp. Clin. Cancer Res.201837131410.1186/s13046‑018‑0988‑830547810
    [Google Scholar]
  54. PangY. LiuJ. LiX. XiaoG. WangH. YangG. LiY. TangS.C. QinS. DuN. ZhangH. LiuD. SunX. RenH. MYC and DNMT 3A-mediated DNA methylation represses micro RNA -200b in triple negative breast cancer.J. Cell. Mol. Med.201822126262627410.1111/jcmm.1391630324719
    [Google Scholar]
  55. GianniC. PalleschiM. MerloniF. BleveS. CasadeiC. SiricoM. Di MennaG. SartiS. CecconettoL. MariottiM. De GiorgiU. Potential impact of preoperative circulating biomarkers on individual escalating/de-escalating strategies in early breast cancer.Cancers20221519610.3390/cancers1501009636612091
    [Google Scholar]
  56. WanJ.C.M. MassieC. Garcia-CorbachoJ. MouliereF. BrentonJ.D. CaldasC. PaceyS. BairdR. RosenfeldN. Liquid biopsies come of age: Towards implementation of circulating tumour DNA.Nat. Rev. Cancer201717422323810.1038/nrc.2017.728233803
    [Google Scholar]
  57. HaiL. LiL. LiuZ. TongZ. SunY. Whole-genome circulating tumor DNA methylation landscape reveals sensitive biomarkers of breast cancer.MedComm202233e134
    [Google Scholar]
  58. ZhangX. ZhaoD. YinY. YangT. YouZ. LiD. ChenY. JiangY. XuS. GengJ. ZhaoY. WangJ. LiH. TaoJ. LeiS. JiangZ. ChenZ. YuS. FanJ.B. PangD. Circulating cell-free DNA-based methylation patterns for breast cancer diagnosis.NPJ Breast Cancer20217110610.1038/s41523‑021‑00316‑734400642
    [Google Scholar]
  59. SaltaS. P NunesS. Fontes-SousaM. LopesP. FreitasM. CaldasM. AntunesL. CastroF. AntunesP. Palma de SousaS. HenriqueR. JerónimoC. A DNA methylation-based test for breast cancer detection in circulating cell-free DNA.J. Clin. Med.201871142010.3390/jcm711042030405052
    [Google Scholar]
  60. KleinE.A. BeerT.M. SeidenM. The promise of multicancer early detection. Comment on Pons-Belda et al. Can circulating tumor DNA support a successful screening test for early cancer detection? the grail paradigm. Diagnostics 2021, 11, 2171 .Diagnostics2022125124310.3390/diagnostics1205124335626398
    [Google Scholar]
  61. LiangR. LiX. LiW. ZhuX. LiC. DNA methylation in lung cancer patients: Opening a “window of life” under precision medicine.Biomed. Pharmacother.202114411220210.1016/j.biopha.2021.11220234654591
    [Google Scholar]
  62. XuR. WeiW. KrawczykM. WangW. LuoH. FlaggK. YiS. ShiW. QuanQ. LiK. ZhengL. ZhangH. CaugheyB.A. ZhaoQ. HouJ. ZhangR. XuY. CaiH. LiG. HouR. ZhongZ. LinD. FuX. ZhuJ. DuanY. YuM. YingB. ZhangW. WangJ. ZhangE. ZhangC. LiO. GuoR. CarterH. ZhuJ. HaoX. ZhangK. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma.Nat. Mater.201716111155116110.1038/nmat499729035356
    [Google Scholar]
  63. LuoH. ZhaoQ. WeiW. ZhengL. YiS. LiG. WangW. ShengH. PuH. MoH. ZuoZ. LiuZ. LiC. XieC. ZengZ. LiW. HaoX. LiuY. CaoS. LiuW. GibsonS. ZhangK. XuG. XuR. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer.Sci. Transl. Med.202012524eaax753310.1126/scitranslmed.aax753331894106
    [Google Scholar]
  64. LennonA.M. BuchananA.H. KindeI. WarrenA. HonushefskyA. CohainA.T. LedbetterD.H. SanfilippoF. SheridanK. RosicaD. AdonizioC.S. HwangH.J. LahouelK. CohenJ.D. DouvilleC. PatelA.A. HagmannL.N. RolstonD.D. MalaniN. ZhouS. BettegowdaC. DiehlD.L. UrbanB. StillC.D. KannL. WoodsJ.I. SalvatiZ.M. VadakaraJ. LeemingR. BhattacharyaP. WalterC. ParkerA. LengauerC. KleinA. TomasettiC. FishmanE.K. HrubanR.H. KinzlerK.W. VogelsteinB. PapadopoulosN. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention.Science20203696499eabb960110.1126/science.abb960132345712
    [Google Scholar]
  65. XuZ. SandlerD.P. TaylorJ.A. Blood DNA methylation and breast cancer: A prospective case-cohort analysis in the sister study.J. Natl. Cancer Inst.20201121879410.1093/jnci/djz06530989176
    [Google Scholar]
  66. TerryM.B. McDonaldJ.A. WuH.C. EngS. SantellaR.M. Epigenetic biomarkers of breast cancer risk: Across the breast cancer prevention continuum.Adv. Exp. Med. Biol.2016882336810.1007/978‑3‑319‑22909‑6_226987530
    [Google Scholar]
  67. LiuJ. ZhaoH. HuangY. XuS. ZhouY. ZhangW. LiJ. MingY. WangX. ZhaoS. LiK. DongX. MaY. QianT. ChenX. XingZ. ZhangY. ChenH. LiuZ. PangD. ZhouM. WuZ. WangX. WangX. WuN. SuJ. Genome-wide cell-free DNA methylation analyses improve accuracy of non-invasive diagnostic imaging for early-stage breast cancer.Mol. Cancer20212013610.1186/s12943‑021‑01330‑w33608029
    [Google Scholar]
  68. WangT. LiP. QiQ. ZhangS. XieY. WangJ. LiuS. MaS. LiS. GongT. XuH. XiongM. LiG. YouC. LuoZ. LiJ. DuL. WangC. A multiplex blood-based assay targeting DNA methylation in PBMCs enables early detection of breast cancer.Nat. Commun.2023141472410.1038/s41467‑023‑40389‑537550304
    [Google Scholar]
  69. PengS. ZhangX. WuY. Potential applications of DNA methylation testing technology in female tumors and screening methods.Biochim. Biophys. Acta Rev. Cancer20231878518894110.1016/j.bbcan.2023.18894137329994
    [Google Scholar]
  70. MuseM.E. CarrollC.D. SalasL.A. KaragasM.R. ChristensenB.C. Application of novel breast biospecimen cell-type adjustment identifies shared DNA methylation alterations in breast tissue and milk with breast cancer–risk factors.Cancer Epidemiol. Biomarkers Prev.202332455056010.1158/1055‑9965.EPI‑22‑040536780234
    [Google Scholar]
  71. FurrerD. DragicD. ChangS.L. FournierF. DroitA. JacobS. DiorioC. Association between genome-wide epigenetic and genetic alterations in breast cancer tissue and response to HER2-targeted therapies in HER2-positive breast cancer patients: new findings and a systematic review.Cancer Drug Resist.202254995101510.20517/cdr.2022.6336627894
    [Google Scholar]
  72. AbsmaierM. NapieralskiR. SchusterT. AubeleM. WalchA. MagdolenV. DornJ. GrossE. HarbeckN. NoskeA. KiechleM. SchmittM. PITX2 DNA-methylation predicts response to anthracycline-based adjuvant chemotherapy in triple-negative breast cancer patients.Int. J. Oncol.201852375576710.3892/ijo.2018.424129328369
    [Google Scholar]
  73. NapieralskiR. SchrickerG. AuerG. AubeleM. PerkinsJ. MagdolenV. UlmK. HamannM. WalchA. WeichertW. KiechleM. WilhelmO.G. PITX2 DNA-methylation: Predictive versus prognostic value for anthracycline-based chemotherapy in triple-negative breast cancer patients.Breast Care202116552353110.1159/00051046834720812
    [Google Scholar]
  74. ZhangJ. ZhangJ. XuS. ZhangX. WangP. WuH. XiaB. ZhangG. LeiB. WanL. ZhangD. PangD. Hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognosis in breast cancer.Cell. Physiol. Biochem.201845269270510.1159/00048716229414807
    [Google Scholar]
  75. LuoL. FuS. DuW. HeL. ZhangX. WangY. ZhouY. HongS. LRRC3B and its promoter hypomethylation status predicts response to anti-PD-1 based immunotherapy.Front. Immunol.20231495986810.3389/fimmu.2023.95986836798137
    [Google Scholar]
  76. AssumpçãoJ.H.M. TakedaA.A.S. SforcinJ.M. RainhoC.A. Effects of propolis and phenolic acids on triple-negative breast cancer cell lines: Potential involvement of epigenetic mechanisms.Molecules2020256128910.3390/molecules2506128932178333
    [Google Scholar]
  77. SzczepanekJ. SkorupaM. Jarkiewicz-TretynJ. CybulskiC. TretynA. Harnessing epigenetics for breast cancer therapy: The role of DNA methylation, histone modifications, and MicroRNA.Int. J. Mol. Sci.2023248723510.3390/ijms2408723537108398
    [Google Scholar]
  78. BuocikovaV. LonghinE.M. PilalisE. MastrokalouC. MiklikovaS. CihovaM. PoturnayovaA. MackovaK. BabelovaA. TrnkovaL. El YamaniN. ZhengC. Rios-MondragonI. LabudovaM. CsaderovaL. KuracinovaK.M. MakovickyP. KucerovaL. MatuskovaM. CimpanM.R. DusinskaM. BabalP. ChatziioannouA. GabelovaA. Rundén-PranE. SmolkovaB. Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models.Biomed. Pharmacother.202214711266210.1016/j.biopha.2022.11266235091237
    [Google Scholar]
  79. ChequinA. CostaL.E. de CamposF.F. MoncadaA.D.B. de LimaL.T.F. SledzL.R. PichethG.F. AdamiE.R. AccoA. GonçalvesM.B. ManicaG.C.M. ValdameriG. de NoronhaL. TellesJ.E.Q. JandreyE.H.F. CostaE.T. CostaF.F. de SouzaE.M. RamosE.A.S. KlassenG. Antitumoral activity of liraglutide, a new DNMT inhibitor in breast cancer cells in vitro and in vivo. Chem. Biol. Interact.202134910964110.1016/j.cbi.2021.10964134534549
    [Google Scholar]
  80. PathaniaR. RamachandranS. ElangovanS. PadiaR. YangP. CinghuS. Veeranan-KarmegamR. ArjunanP. Gnana-PrakasamJ.P. SadanandF. PeiL. ChangC.S. ChoiJ.H. ShiH. ManicassamyS. PrasadP.D. SharmaS. GanapathyV. JothiR. ThangarajuM. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis.Nat. Commun.201561691010.1038/ncomms791025908435
    [Google Scholar]
  81. ChuW. ZhangX. QiL. FuY. WangP. ZhaoW. DuJ. ZhangJ. ZhanJ. WangY. ZhuW.G. YuY. ZhangH. The EZH2–PHACTR2–AS1–ribosome axis induces genomic instability and promotes growth and metastasis in breast cancer.Cancer Res.202080132737275010.1158/0008‑5472.CAN‑19‑332632312833
    [Google Scholar]
  82. FuY. ZhangX. LiuX. WangP. ChuW. ZhaoW. WangY. ZhouG. YuY. ZhangH. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis.Signal Transduct. Target. Ther.2022718110.1038/s41392‑022‑00896‑135307730
    [Google Scholar]
  83. SmitL. BernsK. SpenceK. RyderW.D. ZepsN. MadiredjoM. BeijersbergenR. BernardsR. ClarkeR.B. An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation.Oncotarget2016732596261010.18632/oncotarget.635426595803
    [Google Scholar]
  84. LiuH. SongY. QiuH. LiuY. LuoK. YiY. JiangG. LuM. ZhangZ. YinJ. ZengS. ChenX. DengM. JiaX. GuY. ChenD. ZhengG. HeZ. Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis.Cell Death Differ.202027396698310.1038/s41418‑019‑0389‑331296961
    [Google Scholar]
  85. El HelouR. WicinskiJ. GuilleA. AdélaïdeJ. FinettiP. BertucciF. ChaffanetM. BirnbaumD. Charafe-JauffretE. GinestierC. Brief reports: A distinct DNA methylation signature defines breast cancer stem cells and predicts cancer outcome.Stem Cells201432113031303610.1002/stem.179225069843
    [Google Scholar]
  86. ThillainadesanG. ChitilianJ.M. IsovicM. AblackJ.N.G. MymrykJ.S. TiniM. TorchiaJ. TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex.Mol. Cell201246563664910.1016/j.molcel.2012.03.02722560925
    [Google Scholar]
  87. HajibabaeiS. SotoodehnejadnematalahiF. NafissiN. ZeinaliS. AziziM. Aberrant promoter hypermethylation of miR-335 and miR-145 is involved in breast cancer PD-L1 overexpression.Sci. Rep.2023131100310.1038/s41598‑023‑27415‑836653507
    [Google Scholar]
  88. MetaxasG. TsiambasE. MarinopoulosS. AdamopoulouM. SpyropoulouD. FalidasE. DavrisD. ManaiosL. FotiadesP. MastronikoliS. PeschosD. DimitrakakisC. DNA Mismatch Repair System Imbalances in Breast Adenocarcinoma.Cancer Diagnosis & Prognosis20233216917410.21873/cdp.1019736875308
    [Google Scholar]
  89. SeokH.J. ChoiJ.Y. YiJ.M. BaeI.H. Targeting miR-5088-5p attenuates radioresistance by suppressing Slug.Noncoding RNA Res.20238216417310.1016/j.ncrna.2022.12.00536632615
    [Google Scholar]
  90. MontenegroM.F. González-GuerreroR. Sánchez-del-CampoL. Piñero-MadronaA. Cabezas-HerreraJ. Rodríguez-LópezJ.N. PRMT1-dependent methylation of BRCA1 contributes to the epigenetic defense of breast cancer cells against ionizing radiation.Sci. Rep.20201011327510.1038/s41598‑020‑70289‑332764667
    [Google Scholar]
  91. WeyrichA. LenzD. FickelJ. Environmental Change-Dependent Inherited Epigenetic Response.Genes (Basel)2018101410.3390/genes1001000430583460
    [Google Scholar]
  92. MontgomeryM. SrinivasanA. Epigenetic gene regulation by dietary compounds in cancer prevention.Adv. Nutr.20191061012102810.1093/advances/nmz04631100104
    [Google Scholar]
  93. Fabianowska-MajewskaK. Kaufman-SzymczykA. Szymanska-KolbaA. JakubikJ. MajewskiG. LubeckaK. Curcumin from Turmeric Rhizome: A Potential Modulator of DNA Methylation Machinery in Breast Cancer Inhibition.Nutrients202113233210.3390/nu1302033233498667
    [Google Scholar]
  94. Al-YousefN. ShinwariZ. Al-ShahraniB. Al-ShowimiM. Al-MoghrabiN. Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines.Oncol. Rep.202043382783810.3892/or.2020.747332020216
    [Google Scholar]
  95. LiangF. ZhangH. GaoH. ChengD. ZhangN. DuJ. YueJ. DuP. ZhaoB. YinL. Liquiritigenin decreases tumorigenesis by inhibiting DNMT activity and increasing BRCA1 transcriptional activity in triple-negative breast cancer.Exp. Biol. Med. (Maywood)2021246445946610.1177/153537022095725532938226
    [Google Scholar]
  96. Vázquez-ArreguínK. TantinD. The Oct1 transcription factor and epithelial malignancies: Old protein learns new tricks.Biochim. Biophys. Acta. Gene Regul. Mech.20161859679280410.1016/j.bbagrm.2016.02.00726877236
    [Google Scholar]
  97. Harandi-ZadehS. BoycottC. BeetchM. YangT. MartinB.J.E. RenK. KwasniakA. DupuisJ.H. LubeckaK. YadaR.Y. HoweL.J. StefanskaB. Pterostilbene changes epigenetic marks at enhancer regions of oncogenes in breast cancer cells.Antioxidants2021108123210.3390/antiox1008123234439480
    [Google Scholar]
  98. BeetchM. BoycottC. Harandi-ZadehS. YangT. MartinB.J.E. Dixon-McDougallT. RenK. GacadA. DupuisJ.H. UllmerM. LubeckaK. YadaR.Y. BrownC.J. HoweL.J. StefanskaB. Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells.J. Nutr. Biochem.20219810881510.1016/j.jnutbio.2021.10881534242723
    [Google Scholar]
  99. SuZ. WangC. ChangD. ZhuX. SaiC. PeiJ. Limonin attenuates the stemness of breast cancer cells via suppressing MIR216A methylation.Biomed. Pharmacother.201911210869910.1016/j.biopha.2019.10869930970511
    [Google Scholar]
  100. PilsD. SteindlE. Bachmayr-HeydaA. DekanS. AustS. A global gene body methylation measure correlates independently with overall survival in solid cancer types.Cancers2020128225710.3390/cancers1208225732806596
    [Google Scholar]
  101. SherG. SalmanN.A. KhanA.Q. PrabhuK.S. RazaA. KulinskiM. DermimeS. HarisM. JunejoK. UddinS. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications.Semin. Cancer Biol.20228315216510.1016/j.semcancer.2020.08.00932858230
    [Google Scholar]
  102. de RuijterT.C. van der HeideF. SmitsK.M. AartsM.J. van EngelandM. HeijnenV.C.G. Prognostic DNA methylation markers for hormone receptor breast cancer: A systematic review.Breast Cancer Res.20202211310.1186/s13058‑020‑1250‑932005275
    [Google Scholar]
  103. PedersenC.A. CaoM.D. FleischerT. RyeM.B. KnappskogS. EikesdalH.P. LønningP.E. TostJ. KristensenV.N. TessemM.B. GiskeødegårdG.F. BathenT.F. DNA methylation changes in response to neoadjuvant chemotherapy are associated with breast cancer survival.Breast Cancer Res.20222414310.1186/s13058‑022‑01537‑935751095
    [Google Scholar]
  104. FanY. XieG. WangZ. WangY. WangY. ZhengH. ZhongX. PTEN promoter methylation predicts 10-year prognosis in hormone receptor-positive early breast cancer patients who received adjuvant tamoxifen endocrine therapy.Breast Cancer Res. Treat.20221921334210.1007/s10549‑021‑06463‑634978016
    [Google Scholar]
  105. GaoB. LiuX. LiZ. ZhaoL. PanY. Overexpression of EZH2/NSD2 histone methyltransferase axis predicts poor prognosis and accelerates tumor progression in triple-negative breast cancer.Front. Oncol.20211060051410.3389/fonc.2020.60051433665162
    [Google Scholar]
  106. LiZ. WangD. ChenX. WangW. WangP. HouP. LiM. ChuS. QiaoS. ZhengJ. BaiJ. PRMT1-mediated EZH2 methylation promotes breast cancer cell proliferation and tumorigenesis.Cell Death Dis.20211211108010.1038/s41419‑021‑04381‑534775498
    [Google Scholar]
  107. DuanD. ShangM. HanY. LiuJ. LiuJ. KongS.H. HouJ. HuangB. LuJ. ZhangY. EZH2–CCF–cGAS axis promotes breast cancer metastasis.Int. J. Mol. Sci.2022233178810.3390/ijms2303178835163710
    [Google Scholar]
  108. VermaA. SinghA. SinghM.P. NengrooM.A. SainiK.K. SatrusalS.R. KhanM.A. ChaturvediP. SinhaA. MeenaS. SinghA.K. DattaD. EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis.Nat. Commun.2022131734410.1038/s41467‑022‑35059‑x36446780
    [Google Scholar]
  109. ZhangL. QuJ. QiY. DuanY. HuangY.W. ZhouZ. LiP. YaoJ. HuangB. ZhangS. YuD. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation.Nat. Commun.2022131254310.1038/s41467‑022‑30105‑035538070
    [Google Scholar]
  110. WangY. YuL. HuZ. FangY. ShenY. SongM. ChenY. Regulation of CCL2 by EZH2 affects tumor-associated macrophages polarization and infiltration in breast cancer.Cell Death Dis.202213874810.1038/s41419‑022‑05169‑x36038549
    [Google Scholar]
  111. CampoyE.M. BranhamM.T. MayorgaL.S. RoquéM. Intratumor heterogeneity index of breast carcinomas based on DNA methylation profiles.BMC Cancer201919132810.1186/s12885‑019‑5550‑330953488
    [Google Scholar]
  112. ViniR. RajaveluA. SreeharshanS. 27-Hydroxycholesterol, the estrogen receptor modulator, alters DNA methylation in breast cancer.Front. Endocrinol.20221378382310.3389/fendo.2022.78382335360070
    [Google Scholar]
  113. LiZ. WangP. CuiW. YongH. WangD. ZhaoT. WangW. ShiM. ZhengJ. BaiJ. Tumour-associated macrophages enhance breast cancer malignancy via inducing ZEB1-mediated DNMT1 transcriptional activation.Cell Biosci.202212117610.1186/s13578‑022‑00913‑436273188
    [Google Scholar]
  114. MathotP. GrandinM. DevaillyG. SouazeF. CahaisV. MoranS. CamponeM. HercegZ. EstellerM. JuinP. MehlenP. DanteR. DNA methylation signal has a major role in the response of human breast cancer cells to the microenvironment.Oncogenesis2017610e39010.1038/oncsis.2017.8829058695
    [Google Scholar]
  115. LeeY.T. TanY.J. FalascaM. OonC.E. Cancer-associated fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer.Cancers20201210294910.3390/cancers1210294933066013
    [Google Scholar]
  116. MasuelliS. RealS. CampoyE. BranhamM.T. MarzeseD.M. SalomonM. De BlasG. AriasR. LevinM. RoquéM. When left does not seem right: Epigenetic and bioelectric differences between left- and right-sided breast cancer.Mol. Med.20222811510.1186/s10020‑022‑00440‑535123413
    [Google Scholar]
  117. MasuelliS. RealS. McMillenP. OudinM. LevinM. RoquéM. The Yin and yang of breast cancer: Ion channels as determinants of left–right functional differences.Int. J. Mol. Sci.202324131112110.3390/ijms24131112137446299
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096278978240204162353
Loading
/content/journals/ccdt/10.2174/0115680096278978240204162353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test