Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

DOCK1 has been reported to be involved in tumor progression and resistance.1-(2-(30-(trifluoromethyl)-[1,10-biphenyl]-4-yl)-2-oxoethyl)-5-pyrrolidinylsulfonyl2(1H)- pyridone (TBOPP) is a selective DOCK1 inhibitor; however, the role and molecular mechanisms of DOCK1 and its inhibition in breast cancer (BC) resistance remain poorly understood. Objective: This study aims toinvestigate the underlying mechanisms of DOCK1 in BC resistance.

Methods

DOCK1 or Twist siRNA and Twist plasmid were used to explore the function of DOCK1 experiments. A mouse xenograft model was used for experiments.

Results

In the present study, we demonstrated that DOCK1 siRNA promoted cisplatin sensitivity in BC cells. Moreover, TBOPP also enhances the therapeutic effect of cisplatin both and . Mechanistically, DOCK1 siRNA inhibited EMT. Twist 1 is one of the EMT-inducing transcription factors and is known to induce EMT. To further reveal the effect of DOCK in BC cells, we co-transfected with DOCK1 and Twist1 siRNA to BC cells and found that co-transfection with DOCK1 and Twist siRNA could not further enhance the cisplatin sensitivity of BC cells. Moreover, DOCK1 siRNA failed to reverse the effect of Twist 1 up-regulation.

Conclusion

Taken together, these results demonstrate that DOCK1 may function as a potential therapeutic target in BC and that combining cisplatin with TBOPP may provide a promising therapeutic strategy for cisplatin-resistant BC patients.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096281231240202073558
2024-02-26
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/25/1/CCDT-25-1-07.html?itemId=/content/journals/ccdt/10.2174/0115680096281231240202073558&mimeType=html&fmt=ahah

References

  1. DeSantisC.E. MaJ. GaudetM.M. NewmanL.A. MillerK.D. Goding SauerA. JemalA. SiegelR.L. Breast cancer statistics, 2019.CA Cancer J. Clin.201969643845110.3322/caac.21583 31577379
    [Google Scholar]
  2. OzolsR.F. O’DwyerP.J. HamiltonT.C. Clinical reversal of drug resistance in ovarian cancer.Gynecol. Oncol.1993511909610.1006/gyno.1993.1252 8244181
    [Google Scholar]
  3. WuS.G. ShihJ.Y. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer.Mol. Cancer20181713810.1186/s12943‑018‑0777‑1 29455650
    [Google Scholar]
  4. Garcia-MartinezL. ZhangY. NakataY. ChanH.L. MoreyL. Epigenetic mechanisms in breast cancer therapy and resistance.Nat. Commun.2021121178610.1038/s41467‑021‑22024‑3 33741974
    [Google Scholar]
  5. RodlerE. SharmaP. BarlowW.E. GralowJ.R. PuhallaS.L. AndersC.K. GoldsteinL. TripathyD. Brown-GlabermanU.A. HuynhT.T. SzyartoC.S. GodwinA.K. PathakH.B. SwisherE.M. RadkeM.R. TimmsK.M. LewD.L. MiaoJ. PusztaiL. HayesD.F. HortobagyiG.N. Cisplatin with veliparib or placebo in metastatic triple-negative breast cancer and BRCA mutation-associated breast cancer (S1416): A randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Oncol.202324216217410.1016/S1470‑2045(22)00739‑2 36623515
    [Google Scholar]
  6. CôtéJ.F. VuoriK. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways.Trends Cell Biol.200717838339310.1016/j.tcb.2007.05.001 17765544
    [Google Scholar]
  7. GadeaG. BlangyA. Dock-family exchange factors in cell migration and disease.Eur. J. Cell Biol.20149310-1246647710.1016/j.ejcb.2014.06.003 25022758
    [Google Scholar]
  8. LeeS.H. ChiuY.C. LiY.H. LinC.C. HouH.A. ChouW.C. TienH.F. High expression of dedicator of cytokinesis 1 (DOCK1) confers poor prognosis in acute myeloid leukemia.Oncotarget2017842722507225910.18632/oncotarget.19706 29069784
    [Google Scholar]
  9. TominoT. TajiriH. TatsuguchiT. ShiraiT. OisakiK. MatsunagaS. SanematsuF. SakataD. YoshizumiT. MaeharaY. KanaiM. CoteJ.F. FukuiY. UrunoT. DOCK1 inhibition suppresses cancer cell invasion and macropinocytosis induced by self-activating Rac1P29S mutation.Biochem. Biophys. Res. Commun.2018497129830410.1016/j.bbrc.2018.02.073 29432733
    [Google Scholar]
  10. LiangY. WangS. ZhangY. Downregulation of Dock1 and Elmo1 suppresses the migration and invasion of triple negative breast cancer epithelial cells through the RhoA/Rac1 pathway.Oncol. Lett.20181633481348810.3892/ol.2018.9077 30127952
    [Google Scholar]
  11. GreenburgG. HayE.D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells.J. Cell Biol.198295133333910.1083/jcb.95.1.333 7142291
    [Google Scholar]
  12. GoossensS. VandammeN. Van VlierbergheP. BerxG. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET.Biochim. Biophys. Acta Rev. Cancer20171868258459110.1016/j.bbcan.2017.06.006 28669750
    [Google Scholar]
  13. LuW. KangY. Epithelial-mesenchymal plasticity in cancer progression and metastasis.Dev. Cell201949336137410.1016/j.devcel.2019.04.010 31063755
    [Google Scholar]
  14. SunN.Y. YangM.H. Metabolic reprogramming and epithelial-mesenchymal plasticity: Opportunities and challenges for cancer therapy.Front. Oncol.20201079210.3389/fonc.2020.00792 32509584
    [Google Scholar]
  15. ChenJ. ChenD. ChenW. JiangH. YangH. WangY. Downregulation of DOCK1 sensitizes bladder cancer cells to cisplatin through preventing epithelial-mesenchymal transition.Drug Des. Devel. Ther.2016102845285310.2147/DDDT.S101998 27660415
    [Google Scholar]
  16. ZhuQ.Q. MaC. WangQ. SongY. LvT. The role of TWIST1 in epithelial-mesenchymal transition and cancers.Tumour Biol.201637118519710.1007/s13277‑015‑4450‑7 26602382
    [Google Scholar]
  17. ZhengX. CarstensJ.L. KimJ. ScheibleM. KayeJ. SugimotoH. WuC.C. LeBleuV.S. KalluriR. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer.Nature2015527757952553010.1038/nature16064 26560028
    [Google Scholar]
  18. SunJ. XuZ. LvH. WangY. WangL. NiY. WangX. HuC. ChenS. TengF. ChenW. ChengX. eIF5A2 regulates the resistance of gastric cancer cells to cisplatin via induction of EMT.Am. J. Transl. Res.2018101242694279 30662669
    [Google Scholar]
  19. YochumZ.A. CadesJ. WangH. ChatterjeeS. SimonsB.W. O’BrienJ.P. KhetarpalS.K. Lemtiri-ChliehG. MyersK.V. HuangE.H.B. RudinC.M. TranP.T. BurnsT.F. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer.Oncogene201938565667010.1038/s41388‑018‑0482‑y 30171258
    [Google Scholar]
  20. LiQ.Q. XuJ.D. WangW.J. CaoX.X. ChenQ. TangF. ChenZ.Q. LiuX.P. XuZ.D. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells.Clin. Cancer Res.20091582657266510.1158/1078‑0432.CCR‑08‑2372 19336515
    [Google Scholar]
  21. ChenK. XuJ. TongY. YanJ.F. PanY. WangW. ZhengL. ZhengX. HuC. HuX. ShenX. ChenW. Rab31 promotes metastasis and cisplatin resistance in stomach adenocarcinoma through Twist1-mediated EMT.Cell Death Dis.202314211510.1038/s41419‑023‑05596‑4 36781842
    [Google Scholar]
  22. TajiriH. UrunoT. ShiraiT. TakayaD. MatsunagaS. SetoyamaD. WatanabeM. Kukimoto-NiinoM. OisakiK. UshijimaM. SanematsuF. HonmaT. TeradaT. OkiE. ShirasawaS. MaeharaY. KangD. CôtéJ.F. YokoyamaS. KanaiM. FukuiY. Targeting ras-driven cancer cell survival and invasion through selective inhibition of DOCK1.Cell Rep.201719596998010.1016/j.celrep.2017.04.016 28467910
    [Google Scholar]
  23. LiR. WuC. LiangH. ZhaoY. LinC. ZhangX. YeC. Knockdown of TWIST enhances the cytotoxicity of chemotherapeutic drugs in doxorubicin-resistant HepG2 cells by suppressing MDR1 and EMT.Int. J. Oncol.20185341763177310.3892/ijo.2018.4495 30066890
    [Google Scholar]
  24. FengJ. LuH. MaW. TianW. LuZ. YangH. CaiY. CaiP. SunY. ZhouZ. FengJ. DengJ. ShuY. QuK. JiaW. GaoP. ZhangH. Genome-wide CRISPR screen identifies synthetic lethality between DOCK1 inhibition and metformin in liver cancer.Protein Cell2022131182584110.1007/s13238‑022‑00906‑6 35217990
    [Google Scholar]
  25. HeL. LuoL. ZhuH. YangH. ZhangY. WuH. SunH. JiangF. KatheraC.S. LiuL. ZhuangZ. ChenH. PanF. HuZ. ZhangJ. GuoZ. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer.Mol. Oncol.201711664065410.1002/1878‑0261.12058 28371273
    [Google Scholar]
  26. XuZ. YaoT. LiuW. miR-378a-3p sensitizes ovarian cancer cells to cisplatin through targeting MAPK1/GRB2.Biomed. Pharmacother.20181071410141710.1016/j.biopha.2018.08.132 30257357
    [Google Scholar]
  27. LiuG. YuM. WuB. GuoS. HuangX. ZhouF. ClaretF.X. PanY. Jab1/Cops5 contributes to chemoresistance in breast cancer by regulating Rad51.Cell. Signal.201953394810.1016/j.cellsig.2018.09.010 30244171
    [Google Scholar]
  28. MillerR.P. TadagavadiR.K. RameshG. ReevesW.B. Mechanisms of Cisplatin nephrotoxicity.Toxins20102112490251810.3390/toxins2112490 22069563
    [Google Scholar]
  29. ZhuD. ZhangX. LinY. LiangS. SongZ. DongC. MT1JP inhibits tumorigenesis and enhances cisplatin sensitivity of breast cancer cells through competitively binding to miR-24-3p.Am. J. Transl. Res.2019111245256 30787983
    [Google Scholar]
  30. JiangY. JiF. LiuY. HeM. ZhangZ. YangJ. WangN. ZhongC. JinQ. YeX. ChenT. Cisplatin-induced autophagy protects breast cancer cells from apoptosis by regulating yes-associated protein.Oncol. Rep.20173863668367610.3892/or.2017.6035 29039616
    [Google Scholar]
  31. DunneM. DouY.N. DrakeD.M. SpenceT. GontijoS.M.L. WellsP.G. AllenC. Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer.J. Control. Release2018282354510.1016/j.jconrel.2018.04.029 29673642
    [Google Scholar]
  32. Soleymani AbyanehH. GuptaN. Radziwon-BalickaA. JuraszP. SeubertJ. LaiR. LavasanifarA. STAT3 but Not HIF-1α is important in mediating hypoxia-induced chemoresistance in MDA-MB-231, a triple negative breast cancer cell line.Cancers201791213710.3390/cancers9100137 29036915
    [Google Scholar]
  33. HasegawaH. KiyokawaE. TanakaS. NagashimaK. GotohN. ShibuyaM. KurataT. MatsudaM. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane.Mol. Cell. Biol.19961641770177610.1128/MCB.16.4.1770 8657152
    [Google Scholar]
  34. KiyokawaE. HashimotoY. KobayashiS. SugimuraH. KurataT. MatsudaM. Activation of Rac1 by a Crk SH3-binding protein, DOCK180.Genes Dev.199812213331333610.1101/gad.12.21.3331 9808620
    [Google Scholar]
  35. JarzynkaM.J. HuB. HuiK.M. Bar-JosephI. GuW. HiroseT. HaneyL.B. RavichandranK.S. NishikawaR. ChengS.Y. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion.Cancer Res.200767157203721110.1158/0008‑5472.CAN‑07‑0473 17671188
    [Google Scholar]
  36. LiH. YangL. FuH. YanJ. WangY. GuoH. HaoX. XuX. JinT. ZhangN. Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis.Nat. Commun.201341170610.1038/ncomms2680 23591873
    [Google Scholar]
  37. PanY. LiX. DuanJ. YuanL. FanS. FanJ. XiaokaitiY. YangH. WangY. LiX. Enoxaparin sensitizes human non-small-cell lung carcinomas to gefitinib by inhibiting DOCK1 expression, vimentin phosphorylation, and Akt activation.Mol. Pharmacol.201587337839010.1124/mol.114.094425 25488183
    [Google Scholar]
  38. KatohH. HiramotoK. NegishiM. Activation of Rac1 by RhoG regulates cell migration.J. Cell Sci.20061191566510.1242/jcs.02720 16339170
    [Google Scholar]
  39. LaurinM. HuberJ. PelletierA. HouallaT. ParkM. FukuiY. Haibe-KainsB. MullerW.J. CôtéJ.F. Rac-specific guanine nucleotide exchange factor DOCK1 is a critical regulator of HER2-mediated breast cancer metastasis.Proc. Natl. Acad. Sci.2013110187434743910.1073/pnas.1213050110 23592719
    [Google Scholar]
  40. ChenQ. JiaoD. WangJ. HuH. TangX. ChenJ. MouH. LuW. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET.Oncotarget2016717245102452610.18632/oncotarget.8229 27014910
    [Google Scholar]
  41. XieS.L. FanS. ZhangS.Y. ChenW.X. LiQ.X. PanG.K. ZhangH.Q. WangW.W. WengB. ZhangZ. LiJ.S. LinZ.Y. SOX8 regulates cancer stem‐like properties and cisplatin‐induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β‐catenin pathway.Int. J. Cancer201814261252126510.1002/ijc.31134 29071717
    [Google Scholar]
  42. TakedaT. TsubakiM. MatsudaT. KimuraA. JinushiM. ObanaT. TakegamiM. NishidaS. EGFR inhibition reverses epithelial mesenchymal transition, and decreases tamoxifen resistance via Snail and Twist downregulation in breast cancer cells.Oncol. Rep.202247610910.3892/or.2022.8320 35445730
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096281231240202073558
Loading
/content/journals/ccdt/10.2174/0115680096281231240202073558
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.


  • Article Type:
    Research Article
Keyword(s): Breast cancer; cisplatin; DOCK1,TWIST 1; epithelial-mesenchymal transition; TBOPP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test