Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

The central metabolism of a cell can determine its short- and long-term structure and function. When a disease state arises, the metabolism (i.e., the transportation of nutrients into the cells, the overall substrate utilization and production, synthesis and accumulation of intracellular metabolites, etc.) is altered in a way that may permit organisms to survive under the changing physiologic constraints. Although the response of cells to injury was studied thoroughly using molecular biology and structural morphology techniques, the knowledge regarding the metabolic signatures of the disease is limited. However, recent advances in analytical methods and mathematical tools have led to new approaches to those questions with the concept of computational biology which relies on the integration of experimentation, data processing and modeling. The attempt to formulate current knowledge in mathematical terms has led to the development of several mathematical modeling tools (i.e., metabolic flux analysis, metabolic control analysis, etc.) that helps us to understand an entire biological system from basic structure to dynamic interactions. This review provides an overview and summarizes the current status of applications of mathematical models for the quantification of fluxes. A specific example of kidney podocyte cells illustrates how metabolic alterations, which occur during injury, can be used to aid in future therapeutic development.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/187231308783334171
2008-01-01
2025-06-18
Loading full text...

Full text loading...

/content/journals/ccb/10.2174/187231308783334171
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test