Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Glucose-dependent insulinotropic polypeptide (GIP or gastric inhibitory polypeptide) is a gut-derived incretin hormone which regulates glucose-induced insulin secretion. In addition to its actions on pancreatic beta-cells, GIP exerts a range of secondary extrapancreatic activities, which further augments its antihyperglycaemic properties. As such, GIP has attracted attention as a potential therapeutic agent for the treatment of diabetes, obesity and related metabolic disorders. However, a major drawback in utilising GIP as a therapeutic is its relatively short biological half-life due to degradation by the ubiquitous enzyme dipeptidylpeptidase-IV (DPP-IV) and rapid renal clearance. Consequently, efforts are presently focused on developing more stable and longer-acting forms of GIP which are resistant to DPP-IV-mediated degradation and have improved pharmacokinetic properties. In essence, structural modifications of GIP through N-terminal modification, amino acid substitution and/or fatty acid derivatisation have been shown to generate analogues which exhibit a range of activities from potent agonist action to specific antagonism of native GIP. The purpose of this review is to highlight recent advances in the development of GIP-based therapeutics and their potential in the treatment of type 2 diabetes and obesity.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/187231308783334108
2008-01-01
2025-06-17
Loading full text...

Full text loading...

/content/journals/ccb/10.2174/187231308783334108
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test