Skip to content
2000
image of Chemical Profiling, In-Silico Investigation and In Vivo Toxicity Assessment of Lacatomtom (A Psychoactive Mixture) on Selected Indices in Albino Wistar Rats

Abstract

Introduction/Objective

The use of lacatomtom (LTT), a psychoactive mixture of tomtom (TT) candies with lacasera (LC) beverage, has recently increased among young Nigerians and Africans. There isn't much scientific study on the constituent and effects of this psychoactive substance.

Methods

Herein, LTT was chemically-profiled using GCMS analysis, and the toxicological effects were examined in albino rats. experiment consists of five groups of six rats each (group 2 - LTT ; groups 1, 3, & 4 - TTT, TT, LC (1 mL) mg/mL kg/body weight once/day respectively, group 5 - distilled water ). Identified constituents were examined against human monoamine oxidase (MOA) and human catechol O-methyltransferase (COMT) using methods.

Results

Forty-seven chemical compounds were identified. intake of LTT elevated plasma alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine, total cholesterol, and LDL-cholesterol levels. The docked poses, binding scores, and interactions with amino acids informed the selection of (4-Methoxymethoxy-hex-5-ynylidene)-cyclohexane (MM) (-9.4 kcal/mol) and 3-(hydroxyphenylmethyl)-3,4-dimethyl-1-phenylpentan-2-one (HP) for COMT (-9.4 kcal/mol), while propionylcodeine (-10.1 kcal/mol) and HP (-8.9 kcal/mol) for MOA. Top-docked compounds (TDC) demonstrated the potential to permeate the blood-brain barrier. TDC was predicted to be a positive substrate of the P-glycoprotein and presents inhibitory potential for cytochrome P descriptors. HP was mutagenic and could induce human hepatotoxicity and drug-induced liver injury, while propionylcodeine had a human hepatotoxic prediction.

Conclusion

The present study, for the first time, confirmed the potential toxicity of lacatomtom to the liver, kidney, heart, and central nervous system supported by the identified top-docked compounds regarded as potential psychoactive constituents of MOA and COMT.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968319253241024050426
2024-11-04
2024-12-23
Loading full text...

Full text loading...

References

  1. Peacock A. Bruno R. Gisev N. Degenhardt L. Hall W. Sedefov R. White J. Thomas K.V. Farrell M. Griffiths P. New psychoactive substances: Challenges for drug surveillance, control, and public health responses. Lancet 2019 394 10209 1668 1684 10.1016/S0140‑6736(19)32231‑7 31668410
    [Google Scholar]
  2. Mirian Aguocha C. Nwefoh E. Prevalence and correlates of substance use among undergraduates in a developing country. Afr. Health Sci. 2021 21 2 875 883 10.4314/ahs.v21i2.49 34795747
    [Google Scholar]
  3. Degenhardt L. Chiu W.T. Sampson N. Kessler R.C. Anthony J.C. Angermeyer M. Bruffaerts R. de Girolamo G. Gureje O. Huang Y. Karam A. Kostyuchenko S. Lepine J.P. Mora M.E.M. Neumark Y. Ormel J.H. Pinto-Meza A. Posada-Villa J. Stein D.J. Takeshima T. Wells J.E. Toward a global view of alcohol, tobacco, cannabis, and cocaine use: Findings from the WHO World Mental Health Surveys. PLoS Med. 2008 5 7 e141 10.1371/journal.pmed.0050141 18597549
    [Google Scholar]
  4. Yusuf FA Factors Influencing Substance Abuse among Undergraduate Students in Osun State, Nigeria. African Res. Rev. 2011 4 4 69233
    [Google Scholar]
  5. Lapsley D.K. Edgerton J. Separation‐individuation, adult attachment style, and college adjustment. J. Couns. Dev. 2002 80 4 484 492 10.1002/j.1556‑6678.2002.tb00215.x
    [Google Scholar]
  6. Adesida S.A. Quadri M.O. Adedeji A.M. Use of psychoactive substances among students in a Nigerian University: An imperative for intervention programs. Sci. Am. 2022 16 e01139
    [Google Scholar]
  7. Oluwafunmilayo O.V. John O.O. Olabode O.N. Blessing A.O. Manirambona E. Vicerra P.M.M. Prevalence and pattern of psychoactive substance use among government secondary school students in central Nigeria. PAMJ-One Health 2022 2022 8
    [Google Scholar]
  8. Onaolapo O.J. Olofinnade A.T. Ojo F.O. Adeleye O. Falade J. Onaolapo A.Y. Substance use and substance use disorders in Africa: An epidemiological approach to the review of existing literature. World J. Psychiatry 2022 12 10 1268 1286 10.5498/wjp.v12.i10.1268 36389088
    [Google Scholar]
  9. Mustapha A.K. Codeine: Addicts now use lacasera, tomtom to form “gigabyte” solution-NDLEA. 2018 Available From: https://peoplesdailyng.com/codeine-addicts-now-use-lacasera-tomtom-to-form-gigabyte-solution-ndlea
  10. Kuntzleman T.S. Davenport L.S. Cothran V.I. Kuntzleman J.T. Campbell D.J. New demonstrations and new insights on the mechanism of the Candy-Cola soda geyser. J. Chem. Educ. 2017 94 5 569 576 10.1021/acs.jchemed.6b00862
    [Google Scholar]
  11. Alexandridou A. Mouskeftara T. Raikos N. Gika H.G. GC-MS analysis of underivatised new psychoactive substances in whole blood and urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020 1156 122308 10.1016/j.jchromb.2020.122308 33038866
    [Google Scholar]
  12. Yu W MacKerell AD Computer-aided drug design methods. Methods Mol. Biol. 2017 1520 85 106 10.1007/978‑1‑4939‑6634‑9_5
    [Google Scholar]
  13. Lee K. Kim D. In-silico molecular binding prediction for human drug targets using deep neural multi-task learning. Genes (Basel) 2019 10 11 906 10.3390/genes10110906 31703452
    [Google Scholar]
  14. Halperin I. Ma B. Wolfson H. Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002 47 4 409 443 10.1002/prot.10115 12001221
    [Google Scholar]
  15. Hassan S.S. Abbas S.Q. Ali F. Ishaq M. Bano I. Hassan M. Jin H.Z. Bungau S.G. A Comprehensive in silico exploration of pharmacological properties, bioactivities, molecular docking, and anticancer potential of vieloplain F from Xylopia vielana Targeting B-Raf Kinase. Molecules 2022 27 3 917 10.3390/molecules27030917 35164181
    [Google Scholar]
  16. Duarte P Cuadrado A León R. Monoamine oxidase inhibitors: From classic to new clinical approaches. Handb Exp Pharmacol. 2021 264 229 259
    [Google Scholar]
  17. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  18. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  19. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  20. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  21. Brooks B.R. Brooks C.L. III Mackerell A.D. Jr Nilsson L. Petrella R.J. Roux B. Won Y. Archontis G. Bartels C. Boresch S. Caflisch A. Caves L. Cui Q. Dinner A.R. Feig M. Fischer S. Gao J. Hodoscek M. Im W. Kuczera K. Lazaridis T. Ma J. Ovchinnikov V. Paci E. Pastor R.W. Post C.B. Pu J.Z. Schaefer M. Tidor B. Venable R.M. Woodcock H.L. Wu X. Yang W. York D.M. Karplus M. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009 30 10 1545 1614 10.1002/jcc.21287 19444816
    [Google Scholar]
  22. Jo S. Cheng X. Islam S.M. Huang L. Rui H. Zhu A. Lee H.S. Qi Y. Han W. Vanommeslaeghe K. MacKerell A.D. Jr Roux B. Im W. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Adv. Protein Chem. Struct. Biol. 2014 96 235 265 10.1016/bs.apcsb.2014.06.002 25443960
    [Google Scholar]
  23. Jo S. A web-based graphical user interface for CHARMM SUNHWAN. J. Comput. Chem. 2008 29 1859 1865 10.1002/jcc.20945 18351591
    [Google Scholar]
  24. Ogunyemi O.M. Gyebi G.A. Ibrahim I.M. Esan A.M. Olaiya C.O. Soliman M.M. Batiha G.E.S. Identification of promising multi-targeting inhibitors of obesity from Vernonia amygdalina through computational analysis. Mol. Divers. 2023 27 1 1 25 10.1007/s11030‑022‑10397‑6 35179699
    [Google Scholar]
  25. Gyebi G.A. Ogunyemi O.M. Ibrahim I.M. Afolabi S.O. Adebayo J.O. Dual targeting of cytokine storm and viral replication in COVID-19 by plant-derived steroidal pregnanes: An in silico perspective. Comput. Biol. Med. 2021 134 104406 10.1016/j.compbiomed.2021.104406 33915479
    [Google Scholar]
  26. Ogunyemi O.M. Gyebi G.A. Ibrahim I.M. Olaiya C.O. Ocheje J.O. Fabusiwa M.M. Adebayo J.O. Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: A structure-based screening. RSC Advances 2021 11 53 33380 33398 10.1039/D1RA05976A 35497510
    [Google Scholar]
  27. Valdés-Tresanco M.S. Valdés-Tresanco M.E. Valiente P.A. Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021 17 10 6281 6291 10.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  28. Miller B.R. III McGee T.D. Jr Swails J.M. Homeyer N. Gohlke H. Roitberg A.E. MMPBSA. py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012 8 9 3314 3321 10.1021/ct300418h 26605738
    [Google Scholar]
  29. Emmanuel F.T. Akor S.E. Momoh S. Owemidu I.O. Akor S.E. Investigation of the hepatotoxicity of lacatomtom drink in albino rat. Nigerian J. Biochem. Mol. Biol. 2022 37 26 31
    [Google Scholar]
  30. Kaplan A. The determination of urea, ammonia, and urease. Methods Biochem. Anal. 1969 17 311 324 10.1002/9780470110355.ch7 4893472
    [Google Scholar]
  31. Jaffe A.S. Serota H. Grace A. Sobel B.E. Diagnostic changes in plasma creatine kinase isoforms early after the onset of acute myocardial infarction. Circulation 1986 74 1 105 109 10.1161/01.CIR.74.1.105 3708769
    [Google Scholar]
  32. Reitman S. Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957 28 1 56 63 10.1093/ajcp/28.1.56 13458125
    [Google Scholar]
  33. Demetrious J. Direct Colorimetric Determination of Alkaline Phosphatase in Serum. Enzymes in Clinical Chemistry, Principles and Techniques. 2nd ed Hagerstown Harper and Row 1974 927
    [Google Scholar]
  34. Allain C.C. Poon L.S. Chan C.S.G. Richmond W. Fu P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974 20 4 470 475 10.1093/clinchem/20.4.470 4818200
    [Google Scholar]
  35. Bucolo G. David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 1973 19 5 476 482 10.1093/clinchem/19.5.476 4703655
    [Google Scholar]
  36. Grove T.H. Effect of reagent pH on determination of high-density lipoprotein cholesterol by precipitation with sodium phosphotungstate-magnesium. Clin. Chem. 1979 25 4 560 564 10.1093/clinchem/25.4.560 38018
    [Google Scholar]
  37. Gyebi G.A. Ogunyemi O.M. Adefolalu A.A. Rodríguez-Martínez A. López-Pastor J.F. Banegas-Luna A.J. Pérez-Sánchez H. Adegunloye A.P. Ogunro O.B. Afolabi S.O. African derived phytocompounds may interfere with SARS-CoV-2 RNA capping machinery via inhibition of 2′-O-ribose methyltransferase: An in silico perspective. J. Mol. Struct. 2022 1262 133019 10.1016/j.molstruc.2022.133019 35431328
    [Google Scholar]
  38. Van Hout M.C. The dynamic landscape of novel psychoactive substance (NPS) use in Ireland: Results from an expert consultation. Int. J. Ment. Health Addict. 2017 15 5 985 992 10.1007/s11469‑016‑9714‑y
    [Google Scholar]
  39. Pickering L. Greenwood S. New for who?: Novelty and continuity in drug-related practices of people who use new psychoactive substances. Contemp. Drug Probl. 2019 46 4 323 344 10.1177/0091450919885664
    [Google Scholar]
  40. Dumbili E.W. Ebuenyi I.D. Ugoeze K.C. New psychoactive substances in Nigeria: A call for more research in Africa. Emerging Trends in Drugs, Addictions, and Health 2021 1 100008 10.1016/j.etdah.2021.100008
    [Google Scholar]
  41. Trezza A. Iovinelli D. Santucci A. Prischi F. Spiga O. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Sci. Rep. 2020 10 1 13866 10.1038/s41598‑020‑70863‑9 32807895
    [Google Scholar]
  42. Czarnota S. Johannissen L.O. Baxter N.J. Rummel F. Wilson A.L. Cliff M.J. Levy C.W. Scrutton N.S. Waltho J.P. Hay S. Equatorial active site compaction and electrostatic reorganization in catechol-O-methyltransferase. ACS Catal. 2019 9 5 4394 4401 10.1021/acscatal.9b00174 31080692
    [Google Scholar]
  43. Lerner C. Jakob-Roetne R. Buettelmann B. Ehler A. Rudolph M. Rodríguez Sarmiento R.M. Rodríguez Sarmiento RMa. Design of potent and druglike nonphenolic inhibitors for catechol O-methyltransferase derived from a fragment screening approach targeting the S-adenosyl-l-methionine pocket. J. Med. Chem. 2016 59 22 10163 10175 10.1021/acs.jmedchem.6b00927 27685665
    [Google Scholar]
  44. Matsumoto M. Weickert C.S. Akil M. Lipska B.K. Hyde T.M. Herman M.M. Kleinman J.E. Weinberger D.R. Catechol O-methyltransferase mRNA expression in human and rat brain: Evidence for a role in cortical neuronal function. Neuroscience 2003 116 1 127 137 10.1016/S0306‑4522(02)00556‑0 12535946
    [Google Scholar]
  45. Silva M. Caro V. Guzmán C. Perry G. Areche C. Cornejo A. 1 - α-Synuclein and tau, two targets for dementia. Studies in Natural Products Chemistry Amsterdam Elsevier 2020
    [Google Scholar]
  46. Goldstein R.Z. Volkow N.D. Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 2002 159 10 1642 1652 10.1176/appi.ajp.159.10.1642 12359667
    [Google Scholar]
  47. Arias-Carrión O. Stamelou M. Murillo-Rodríguez E. Menéndez-González M. Pöppel E. Dopaminergic reward system: A short integrative review. Int. Arch. Med. 2010 3 1 24 10.1186/1755‑7682‑3‑24 20925949
    [Google Scholar]
  48. Hyman S.E. Malenka R.C. Nestler E.J. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu. Rev. Neurosci. 2006 29 1 565 598 10.1146/annurev.neuro.29.051605.113009 16776597
    [Google Scholar]
  49. Axelrod J. Tomchick R. Enzymatic O-methylation of epinephrine and other catechols. J. Biol. Chem. 1958 233 3 702 705 10.1016/S0021‑9258(18)64731‑3 13575440
    [Google Scholar]
  50. Lohoff F.W. Weller A.E. Bloch P.J. Nall A.H. Ferraro T.N. Kampman K.M. Pettinati H.M. Oslin D.W. Dackis C.A. O’Brien C.P. Berrettini W.H. Association between the catechol-O-methyltransferase Val158Met polymorphism and cocaine dependence. Neuropsychopharmacology 2008 33 13 3078 3084 10.1038/npp.2008.126 18704099
    [Google Scholar]
  51. Scheggia D Sannino S Luisa Scattoni M Papaleo F. COMT as a drug target for cognitive functions and dysfunctions. CNS Neurol Disord Drug Targets 2012 11 209 21 10.2174/187152712800672481
    [Google Scholar]
  52. Cools R. D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 2011 69 12 e113 e125 10.1016/j.biopsych.2011.03.028 21531388
    [Google Scholar]
  53. Fišar Z. Drugs related to monoamine oxidase activity. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016 69 112 124 10.1016/j.pnpbp.2016.02.012 26944656
    [Google Scholar]
  54. Wagmann L. Brandt S.D. Stratford A. Maurer H.H. Meyer M.R. Interactions of phenethylamine‐derived psychoactive substances of the 2C‐series with human monoamine oxidases. Drug Test. Anal. 2019 11 2 318 324 10.1002/dta.2494 30188017
    [Google Scholar]
  55. Gaweska H Fitzpatrick PF Structures and mechanism of the monoamine oxidase family. Biomol. Concepts 2011 2 5 365 377 10.1515/BMC.2011.030
    [Google Scholar]
  56. Cheng X. Ivanov I. Molecular Dynamics. Methods Mol. Biol. 2012 929 243 285 10.1007/978‑1‑62703‑050‑2_11 23007433
    [Google Scholar]
  57. Dong Y. Liao M. Meng X. Somero G.N. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc. Natl. Acad. Sci. USA 2018 115 6 1274 1279 10.1073/pnas.1718910115 29358381
    [Google Scholar]
  58. Sinha S. Wang S.M. Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Comput. Struct. Biotechnol. J. 2020 18 723 736 10.1016/j.csbj.2020.03.013 32257056
    [Google Scholar]
  59. Perez A. Morrone J.A. Simmerling C. Dill K.A. Advances in free-energy-based simulations of protein folding and ligand binding. Curr. Opin. Struct. Biol. 2016 36 25 31 10.1016/j.sbi.2015.12.002 26773233
    [Google Scholar]
  60. Kollman P.A. Massova I. Reyes C. Kuhn B. Huo S. Chong L. Lee M. Lee T. Duan Y. Wang W. Donini O. Cieplak P. Srinivasan J. Case D.A. Cheatham T.E. III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000 33 12 889 897 10.1021/ar000033j 11123888
    [Google Scholar]
  61. Kimergård A. Foley M. Davey Z. Wadsworth E. Drummond C. Deluca P. The challenge of complex drug use: Associated use of codeine‐containing medicines and new psychoactive substances in a European cross‐sectional online population. Hum. Psychopharmacol. 2017 32 3 e2611 10.1002/hup.2611 28597537
    [Google Scholar]
  62. Gerostamoulos J. Burke M.P. Drummer O.H. Involvement of codeine in drug-related deaths. Am. J. Forensic Med. Pathol. 1996 17 4 327 335 10.1097/00000433‑199612000‑00011 8947360
    [Google Scholar]
  63. Daina A. Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  64. Sapkota K. Mao Z. Synowicki P. Lieber D. Liu M. Ikezu T. Gautam V. Monaghan D.T. GluN2D N-methyl-d-aspartate receptor subunit contribution to the stimulation of brain activity and gamma oscillations by ketamine: Implications for schizophrenia. J. Pharmacol. Exp. Ther. 2016 356 3 702 711 10.1124/jpet.115.230391 26675679
    [Google Scholar]
  65. Daneman R. Prat A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015 7 1 a020412 10.1101/cshperspect.a020412 25561720
    [Google Scholar]
  66. Raschi E. Vasina V. Poluzzi E. De Ponti F. The hERG K+ channel: Target and antitarget strategies in drug development. Pharmacol. Res. 2008 57 3 181 195 10.1016/j.phrs.2008.01.009 18329284
    [Google Scholar]
  67. Kratz J.M. Grienke U. Scheel O. Mann S.A. Rollinger J.M. Natural products modulating the hERG channel: Heartaches and hope. Nat. Prod. Rep. 2017 34 8 957 980 10.1039/C7NP00014F 28497823
    [Google Scholar]
  68. Mulliner D. Schmidt F. Stolte M. Spirkl H.P. Czich A. Amberg A. Computational models for human and animal hepatotoxicity with a global application scope. Chem. Res. Toxicol. 2016 29 5 757 767 10.1021/acs.chemrestox.5b00465 26914516
    [Google Scholar]
  69. Wang N.N. Huang C. Dong J. Yao Z.J. Zhu M.F. Deng Z.K. Lv B. Lu A-P. Chen A.F. Cao D-S. Predicting human intestinal absorption with modified random forest approach: A comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC Advances 2017 7 31 19007 19018 10.1039/C6RA28442F
    [Google Scholar]
  70. Xu Y. Dai Z. Chen F. Gao S. Pei J. Lai L. Deep learning for drug-induced liver injury. J. Chem. Inf. Model. 2015 55 10 2085 2093 10.1021/acs.jcim.5b00238 26437739
    [Google Scholar]
  71. Okorie N. Obeagu E.I. Adeniran O.C. Onyema A.S. Agwu U.U. Codeine Substitute Challenges Drug and Substance Abuse Controls in Nigeria: Histopathology Evaluations of Norvegicus rattus on Lacatomtom. J. Complem. Alternat. Med. Res. 2022 19 8 22 10.9734/jocamr/2022/v19i130366
    [Google Scholar]
  72. Isoje E.F. Okoro I.O. Changes in Oxidative Stress Parameters in Wistar Rats Administered Soft Drink and Menthol Candy. J. Appl. Sci. Environ. Manag. 2022 25 12 2047 2052 10.4314/jasem.v25i12.8
    [Google Scholar]
  73. Arika W. Nyamai D. Osano K. Ngugi M. Njagi E. Biochemical markers of in vivo hepatotoxicity. J. Clin. Toxicol. 2016 6 297
    [Google Scholar]
  74. Ani O Udedi S Akpata E Ezeigwe O Oguazu C Onyishi C Effects of ethanol leaf extract of Justicia carnea on biochemical indices of alloxan-induced diabetic rats. Seman. Sch. 2011
    [Google Scholar]
  75. Jahnavi N. Naidu P. Rao K. Karunasree C. Antihyperlipidemic effect of Asparagus gonnoclados baker against cholesterol diet induced hyperlipidemia in rats. Asian J. Pharm. Clin. Res. 2014 7 212 215
    [Google Scholar]
  76. Shahid S.U. The abnormal lipid profile in obesity and coronary heart disease (CHD) in Pakistani subjects. Lipids Health Dis. 2020 19 1 7
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968319253241024050426
Loading
/content/journals/ccb/10.2174/0122127968319253241024050426
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test