Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

f. sp. a telluric fungal pathogen commonly found in soils, is the causal agent of fungal vascular wilt of date palms in Moroccan oases. The infection by the pathogen leads to the death of the date palm after six months to two years, which causes enormous economic and environmental damage.

Objective

The framework of this paper is to determine the chemical composition of six essential oils using GC-MS and their antifungal activity on the mycelial growth of f. sp. , as well as the molecular docking study to evaluate the inhibitory potential of fungal trypsin.

Methods

The essential oils were extracted from different parts of the plants (whole plant, flowers, and leaves) by steam distillation, and were identified using gas chromatography-mass spectrometry (GC/MS). The antifungal assay of the extracted essential oils and their main components was assessed using the direct contact method with the fungus at different concentrations; the obtained results were evaluated by calculating the minimum inhibitory concentration (MIC) of each essential oil, followed by an study of the major identified compounds for better understanding of the inhibitory potential against fungal trypsin activity.

Results

The identification of the different bioactive compounds using GC-MS revealed that Eo was characterized by eucalyptol 46.26%, camphor 10.03%, and β-pinene 6.63%; while Eo was endowed by the presence of linalool 14.93%, camphor 14.11%, and linalyl acetate 11.17%. Furthermore, was rich in 1,3,5-cycloheptatriene, 1,6-dimethyl- 36.44%, camphor 22.50%, and α-thujone 7.21%. While was rich in eucalyptol 74.32%, β-Cymene 11.41%, α-Pinene 6.96%. Finally, were both characterized by the presence of D-limonene 20.15%, trans-carveol 19.59%, D-Carvone 14.96%, and pulegone (42.40%), 3-cyclopentene-1-ethanol, 2,2,4-trimethyl- (11.28%), 1,3,4-trimethyl-3-cyclohexenyl-1-carboxaldehyde (9.68%), respectively. Regarding the all Eos from different plants exhibited pronounced antifungal effect. The MIC values recorded for were MIC= 1.75 mg/L, and (MIC= 1.80 mg/L), and (MIC= 1.90 mg/L). The strongest inhibition potential was associated with EO (MIC= 1.15 mg/L) EO (MIC= 1.60 mg/L). As for the computational study performed camphor one of the bioactive compounds showed its ability to act against trypsin which could be considered a potential candidate against f. sp. .

Conclusion

The studied essential oils from different medicinal and aromatic plants showed significant antifungal activity, probably due to the Camphor which could have an inhibitory effect on the f. sp. trypsin. Further research should be conducted for a better understanding of the mechanism of action of these essential oils.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968296919240926095348
2024-10-25
2025-04-21
Loading full text...

Full text loading...

References

  1. AsmaN. SalihC. AmarO. MeriemB. WidedA. Chemical Composition of Myrtus Communis Essential Oil and its Antifungal Activity on Fusarium Oxysporum f. sp. Albedinis and Fusarium culmorum. Plant Arch.202222231031310.51470/PLANTARCHIVES.2022.v22.no2.053
    [Google Scholar]
  2. MelianiH. MakhloufiA. CherifA. MahjoubiM. MakhloufiK. Biocontrol of toxinogenic Aspergillus flavus and Fusarium oxysporum f. sp. albedinis by two rare Saharan actinomycetes strains and LC-ESI/MS-MS profiling of their antimicrobial products.Saudi J. Biol. Sci.202229610328810.1016/j.sjbs.2022.10328835574281
    [Google Scholar]
  3. BenabbesR. LahmassI. SounaF. El YoubiM. SaalaouiE. HakkouA. In Vitro Inhibitory Effect of the Extract Powder of Rosemary (Rosmarinus officinalis), Olender (Nerium Oleander), Grenadier (Punica Granatum) on the Growth of Fusarium Oxysporum f. sp Albidinis and in Vivo Test Antagonist Fungi on the Incidence and the control of Vascular wilt Disease of Date Palm in Palm Grove in Figuig South of Morocco.Adv. Environ. Biol.20159126132
    [Google Scholar]
  4. FatihaA. LarbiB. AhmedM. AmarY. NassimaF. KhadidjaM. The Causal Agent of the Bayoud and Gas Chromatography-Mass Spectrometry Analysis.Adv. Food Sci.2010452127
    [Google Scholar]
  5. KhoulassaS. ElmoualijB. BenlyasM. MezianiR. BouhlaliE.D.T. HouriaB. AlaouiY.E.H. HaridasS. GuoJ. LipzenA. HurtadoC.V. TejomurthulaS. BarryK. GrigorievI.V. ColemanJ.J. AyhanD.H. MaL.J. EssariouiA. High-Quality Draft Nuclear and Mitochondrial Genome Sequence of Fusarium oxysporum f. sp. albedinis strain 9, the Causal Agent of Bayoud Disease on Date Palm.Plant Dis.202210671974197610.1094/PDIS‑01‑22‑0245‑A35536698
    [Google Scholar]
  6. EttakifiH. AbbassiK. MaouniS. ErbiaiE.H. RahmouniA. LegssyerM. SaidiR. LamraniZ. Esteves da SilvaJ.C.G. PintoE. MaouniA. Chemical Characterization and Antifungal Activity of Blue Tansy (Tanacetum annuum) Essential Oil and Crude Extracts against Fusarium oxysporum f. sp. albedinis, an Agent Causing Bayoud Disease of Date Palm.Antibiotics (Basel)2023129145110.3390/antibiotics1209145137760747
    [Google Scholar]
  7. ChibaneE. EssariouiA. OukninM. BoumezzourhA. BouyanzerA. MajidiL. Antifungal activity of Asteriscus graveolens (Forssk.) Less essential oil against Fusarium oxysporum f. sp. Albedinis, the causal agent of “Bayoud” disease on date palm.J. Chem.20208456465
    [Google Scholar]
  8. RahmouniA. SaidiR. KhaddorM. PintoE. Da Silva Joaquim Carlos GomesE. MaouniA. Chemical composition and antifungal activity of five essential oils and their major components against Fusarium oxysporum f. sp. albedinis of Moroccan palm tree.Euro-Mediterranean Journal for Environmental Integration2019412710.1007/s41207‑019‑0117‑x
    [Google Scholar]
  9. BouissilS. GuérinC. RocheJ. DubessayP. El Alaoui-TalibiZ. PierreG. MichaudP. MouzeyarS. DelattreC. El ModafarC. Induction of Defense Gene Expression and the Resistance of Date Palm to Fusarium oxysporum f. sp. Albedinis in Response to Alginate Extracted from Bifurcaria bifurcata. Mar. Drugs20222028810.3390/md2002008835200618
    [Google Scholar]
  10. RafiqiM. JelonekL. DioufA.M. MbayeA. RepM. DiarraA. Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk.PLoS One2022175e026083010.1371/journal.pone.026083035617325
    [Google Scholar]
  11. RabachB. LbekriL. DihaziA. MezianiR. BenaceurI. JaitiF. Antifungal activity of Punica granatum root extracts and their potential role to trigger date palm defense reaction against bayoud disease.J. Crop Prot.20222022471483
    [Google Scholar]
  12. HouitiE. Inhibition of Fusarium oxysporum f.sp. Albedinis by essential oils of flowers and stems of Rhanterium adpressum. Archives20163141150
    [Google Scholar]
  13. OualdiI. DiassK. AziziS-E. DalliM. TouzaniR. GseyraN. Rosmarinus officinalis essential oils from Morocco: New advances on extraction, GC/MS analysis, and antioxidant activity.Nat. Prod. Res.2022Jun; 37122003200810.1080/14786419.2022.211156135959692
    [Google Scholar]
  14. ZouirechO. AlajmiR. El jeddabH. AllaliA. BourhiaM. El MoussaouiA. El BarnossiA. AhmedA.M. GiesyJ.P. Aboul-SoudM.A.M. LyoussiB. DerwichE. Chemical Composition and Evaluation of Antifungal and Insecticidal Activities of Essential Oils Extracted from Jambosa caryophyllus (Thunb.) Nied: Clove Buds.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/467501636310621
    [Google Scholar]
  15. DiassK. BrahmiF. MokhtariO. AbdellaouiS. HammoutiB. Biological and pharmaceutical properties of essential oils of Rosmarinus officinalis L. and Lavandula officinalis L.Mater. Today Proc.2021457768777310.1016/j.matpr.2021.03.495
    [Google Scholar]
  16. BrahmiF. MokhtariO. LegssyerB. HamdaniI. AsehraouA. HasnaouiI. RokniY. DiassK. OualdiI. TahaniA. Chemical and biological characterization of essential oils extracted from citrus fruits peels.Mater. Today Proc.2021457794779910.1016/j.matpr.2021.03.587
    [Google Scholar]
  17. YusufU. JmohiU. ZauraA. SannaM. AhmadM. An overview of the antibacterial properties of Mentha pulegium.Preprint202210.13140/RG.2.2.15636.68489
    [Google Scholar]
  18. DalliM. AziziS. BenoudaH. AzgharA. TahriM. BouammaliB. MalebA. GseyraN. Molecular Composition and Antibacterial Effect of Five Essential Oils Extracted from Nigella sativa L. Seeds against Multidrug-Resistant Bacteria: A Comparative Study.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/664376533790979
    [Google Scholar]
  19. LockeT. ColhounJ. Contributions to a Method of Testing Oil Palm Seedlings for Resistance to Fusarium oxysporum Schl. f. sp. elaeidts Toovey 1).J. Phytopathol.1974791779210.1111/j.1439‑0434.1974.tb02691.x
    [Google Scholar]
  20. NeriF. MariM. BrigatiS. Control of Penicillium expansum by plant volatile compounds.Plant Pathol.200655110010510.1111/j.1365‑3059.2005.01312.x
    [Google Scholar]
  21. BhattacharyaR. SourirajanA. SharmaP. KumarA. UpadhyayN.K. ShuklaR.K. DevK. KrishnakumarB. SinghM. BoseD. Bioenhancer potential of Aegle marmelos (L.) Corrêa essential oil with antifungal drugs and its mode of action against Candida albicans. Biocatal. Agric. Biotechnol.20234810264710.1016/j.bcab.2023.102647
    [Google Scholar]
  22. SaxenaS. UniyalV. BhattR.P. Inhibitory effect of essential oils against Trichosporon ovoides causing Piedra Hair Infection.Braz. J. Microbiol.20124341347135410.1590/S1517‑8382201200040001624031963
    [Google Scholar]
  23. BhattacharyaR. SharmaP. BoseD. SinghM. Synergistic potential of α-Phellandrene combined with conventional antifungal agents and its mechanism against antibiotic resistant Candida albicans. CABI Agriculture and Bioscience2024511710.1186/s43170‑024‑00218‑1
    [Google Scholar]
  24. HmouniA. HajlaouiM.R. MlaikiA. Resistance de Bofrytis cinerea aux benzimidazoles et aux dicarboximides dans les cultures abritees de tomate en Tunisie.Bulletin OEPP/EPPO199626697705
    [Google Scholar]
  25. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  26. PrakashV. GabraniR. An Insight into Emerging Phytocompounds for Glioblastoma Multiforme Therapy.Cardiovasc. Hematol. Agents Med. Chem.2023227191010.2174/011871525726200323103117191037957904
    [Google Scholar]
  27. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  28. RypniewskiW.R. ØstergaardP.R. Nørregaard-MadsenM. DauterM. WilsonK.S. Fusarium oxysporum trypsin at atomic resolution at 100 and 283 K: A study of ligand binding.Acta Crystallogr. D Biol. Crystallogr.200157181910.1107/S090744490001411611134922
    [Google Scholar]
  29. BeckeA.D. A new mixing of Hartree–Fock and local density-functional theories.J. Chem. Phys.19939821372137710.1063/1.464304
    [Google Scholar]
  30. ZakiH. BelhassanA. AouidateA. LakhlifiT. BenlyasM. BouachrineM. Antibacterial study of 3-(2-amino-6-phenylpyrimidin-4-yl)-N-cyclopropyl-1-methyl-1H-indole-2-carboxamide derivatives: CoMFA, CoMSIA analyses, molecular docking and ADMET properties prediction.J. Mol. Struct.2019117727528510.1016/j.molstruc.2018.09.073
    [Google Scholar]
  31. ElamraniA. ZriraS. BenjilaliB. BerradaM. A study of moroccan rosemary oils.J. Essent. Oil Res.20112000957210.1080/10412905.2000.9699572
    [Google Scholar]
  32. DerwichE. BenzianeZ. ChabirR. TaouilR. In vitro antibacterial activity and GC/MS analysis of the essential oil extract of leaves of Rosmarinus officinalis grown in Morocco.Int. J. Pharm. Pharm. Sci.201138995
    [Google Scholar]
  33. ZaoualiY. BouzaineT. BoussaidM. Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities.Food Chem. Toxicol.201048113144315210.1016/j.fct.2010.08.01020728499
    [Google Scholar]
  34. WangW. LiN. LuoM. ZuY. EfferthT. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components.Molecules201217327041310.3390/molecules17032704
    [Google Scholar]
  35. DiassK. OualdiI. DalliM. AziziS. MohamedM. GseyraN. TouzaniR. HammoutiB. Artemisia herba alba Essential Oil: GC/MS analysis, antioxidant activities with molecular docking on S protein of SARS-CoV-2.Indonesian J. Sci. Technol.20228111810.17509/ijost.v8i1.50737
    [Google Scholar]
  36. Ed-DraA. FilaliF.R. Lo PrestiV. ZekkoriB. NalboneL. ElsharkawyE.R. BentayebA. GiarratanaF. Effectiveness of essential oil from the Artemisia herba-alba aerial parts against multidrug-resistant bacteria isolated from food and hospitalized patients.Biodiversitas (Surak.)20212272995300510.13057/biodiv/d220753
    [Google Scholar]
  37. Messaoudi MoussiiI. NaymeK. TiminouniM. JamaleddineJ. FilaliH. HakkouF. Synergistic antibacterial effects of Moroccan Artemisia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils.Synergy20201010005710.1016/j.synres.2019.100057
    [Google Scholar]
  38. OuguırtıN. BahrıF. BouyahyaouıA. WannerJ. Chemical characterization and bioactivities assessment of Artemisia herba-alba Asso essential oil from South-western Algeria.Nat. Volatiles Essen. Oils202182273610.37929/nveo.844309
    [Google Scholar]
  39. HudaibM.M. AburjaiT.A. Composition of the essential oil from Artemisia herba-alba grown in jordan.J. Essent. Oil Res.200618330130410.1080/10412905.2006.9699096
    [Google Scholar]
  40. AmriI. De MartinoL. MarandinoA. LamiaH. MohsenH. ScandoleraE. De FeoV. ManciniE. Chemical composition and biological activities of the essential oil from Artemisia herba-alba growing wild in Tunisia.Nat. Prod. Commun.2013831934578X130080010.1177/1934578X130080033323678823
    [Google Scholar]
  41. DiassK. MerzoukiM. ElfazaziK. AzzouziH. ChalliouiA. AzzaouiK. HammoutiB. TouzaniR. DepeintF. Ayerdi GotorA. RhaziL. Essential Oil of Lavandula officinalis: Chemical Composition and Antibacterial Activities.Plants2023127157110.3390/plants1207157137050197
    [Google Scholar]
  42. Moussi ImaneM. HoudaF. Said AmalA.H. KaotarN. MohammedT. ImaneR. FaridH. Phytochemical Composition and Antibacterial Activity of Moroccan Lavandula angustifolia Mill.J. Essent. Oil-Bear. Plants20172041074108210.1080/0972060X.2017.1363000
    [Google Scholar]
  43. AlnamerR. AlaouiK. Houcine BouididaE. BenjouadA. CherrahY. Toxicity and Psychotropic Activity of Essential Oils of Rosmarinus officinalis and Lavandula officinalis from Morocco.J. Biol. Active Prod. Nat.20111426227210.1080/22311866.2011.10719093
    [Google Scholar]
  44. TalbaouiA. Chemical composition and antibacterial activity of essential oils from six Moroccan plants.J. Med. Plants Res.201263107810.5897/JMPR10.078
    [Google Scholar]
  45. SlimaniC. SqalliH. RaisC. FarahA. LazraqA. GhadraouiL.E.L. BelmalhaS. EchchgaddaG. Chemical composition and evaluation of biological effects of essential oil and aqueous extract of Lavandula angustifolia L.Not. Sci. Biol.20221411117210.15835/nsb14111172
    [Google Scholar]
  46. KirimerN. MokhtarzadehS. DemirciB. GogerF. KhawarK.M. DemirciF. Phytochemical profiling of volatile components of Lavandula angustifolia Miller propagated under in vitro conditions.Ind. Crops Prod.20179612012510.1016/j.indcrop.2016.11.061
    [Google Scholar]
  47. ZenãoS. AiresA. DiasC. SaavedraM.J. FernandesC. Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers.J. Herb. Med.201710535810.1016/j.hermed.2017.05.003
    [Google Scholar]
  48. ŚmigielskiK.B. PrusinowskaR. KrosowiakK. SikoraM. Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender ( Lavandula angustifolia ).J. Essent. Oil Res.201325429129910.1080/10412905.2013.775080
    [Google Scholar]
  49. PrusinowskaR. ŚmigielskiK.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L). A review.Herba Pol.2014602566610.2478/hepo‑2014‑0010
    [Google Scholar]
  50. HassiotisC.N. NtanaF. LazariD.M. PouliosS. VlachonasiosK.E. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period.Ind. Crops Prod.20146235936610.1016/j.indcrop.2014.08.048
    [Google Scholar]
  51. DespinasseY. MojaS. SolerC. JullienF. PasquierB. BessièreJ.M. BaudinoS. NicolèF. NicolèF. Structure of the chemical and genetic diversity of the true lavender over its natural range.Plants2020912164010.3390/plants912164033255497
    [Google Scholar]
  52. CrișanI. OnaA. VârbanD. MunteanL. VârbanR. StoieA. MihăiescuT. MoreaA. Current Trends for Lavender (Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality.Plants202312235710.3390/plants1202035736679071
    [Google Scholar]
  53. Ait-OuazzouA. LoránS. BakkaliM. LaglaouiA. RotaC. HerreraA. PagánR. ConchelloP. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco.J. Sci. Food Agric.201191142643265110.1002/jsfa.450521769875
    [Google Scholar]
  54. Harkat-MadouriL. AsmaB. MadaniK. Bey-Ould Si SaidZ. RigouP. GrenierD. AllalouH. ReminiH. AdjaoudA. Boulekbache-MakhloufL. Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria.Ind. Crops Prod.20157814815310.1016/j.indcrop.2015.10.015
    [Google Scholar]
  55. UsmanL.A. OguntoyeO.S. IsmaeelR.O. Phytochemical profile, antioxidant and antidiabetic potential of essential oil from fresh and dried leaves of Eucalyptus globulus.J. Chil. Chem. Soc.20226715453546110.4067/S0717‑97072022000105453
    [Google Scholar]
  56. Damjanović-VratnicaB. ĐakovT. ŠukovićD. DamjanovićJ. Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro.Czech J. Food Sci.201129327728410.17221/114/2009‑CJFS
    [Google Scholar]
  57. LuísÂ. DuarteA. GominhoJ. DominguesF. DuarteA.P. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils.Ind. Crops Prod.20167927428210.1016/j.indcrop.2015.10.055
    [Google Scholar]
  58. FadilM. FarahA. IhssaneB. LebraziS. ChraibiM. HalouiT. The screening of parameters influencing the hydrodistillation of Moroccan Mentha piperita L. leaves by experimental design methodology.J. Mater. Environ. Sci.2016714451453
    [Google Scholar]
  59. ChraibiM. ElaminO. LebraziS. FarahA. IraquiM. Antimycobacterial, Antifungal and Radical Scavenging Effects of Essential Oil from Moroccan Mentha piperita. Pharma Chem.201792169
    [Google Scholar]
  60. Hamad Al-MijalliS. ELsharkawyE.R. AbdallahE.M. HamedM. El OmariN. MahmudS. AlshahraniM.M. MrabtiH.N. BouyahyaA. Determination of Volatile Compounds of Mentha piperita and Lavandula multifida and Investigation of Their Antibacterial, Antioxidant, and Antidiabetic Properties.Evid. Based Complement. Alternat. Med.202220221910.1155/2022/930625135747375
    [Google Scholar]
  61. İşcanG. KırımerN. KürkcüoǧluM. DemırcıF. Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural Food and Chemistry.J. Agric. Food Chem.200250143943394610.1021/jf011476k
    [Google Scholar]
  62. Giménez-SantamarinaS. Llorens-MolinaJ.A. Sempere-FerreF. SantamarinaC. RosellóJ. SantamarinaM.P. Chemical composition of essential oils of three Mentha species and their antifungal activity against selected phytopathogenic and post-harvest fungi.All Life2022151647310.1080/26895293.2021.2022007
    [Google Scholar]
  63. JayaramC.S. ChauhanN. DolmaS.K. ReddyS.G.E. Chemical Composition and Insecticidal Activities of Essential Oils against the Pulse Beetle.Molecules202227256810.3390/molecules2702056835056883
    [Google Scholar]
  64. GourichA.A. BencheikhN. BouhrimM. RegraguiM. RhafouriR. DrioicheA. AsbabouA. RemokF. MouradiA. AddiM. HanoC. ZairT. Comparative Analysis of the Chemical Composition and Antimicrobial Activity of Four Moroccan North Middle Atlas Medicinal Plants’ Essential Oils: Rosmarinus officinalis L., Mentha pulegium L., Salvia officinalis L., and Thymus zygis subsp. gracilis (Boiss.) R. Morales.Chemistry2022441775178810.3390/chemistry4040115
    [Google Scholar]
  65. Ez-ZriouliR. El YacoubiH. ImtaraH. El-HessniA. MesfiouiA. TarayrahM. MothanaR.A. NomanO.M. MouhsineF. RochdiA. Chemical composition and antimicrobial activity of essential oils from Mentha pulegium and Rosmarinus officinalis against multidrug-resistant microbes and their acute toxicity study.Open Chem.202220169470210.1515/chem‑2022‑0185
    [Google Scholar]
  66. Bekka-HadjiF. BombardaI. DjoudiF. BakourS. TouatiA. Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria.Molecules2022273109510.3390/molecules2703109535164360
    [Google Scholar]
  67. MahboubiM. HaghiG. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil.J. Ethnopharmacol.2008119232532710.1016/j.jep.2008.07.02318703127
    [Google Scholar]
  68. PouryousefN. AhmadyM. ShariatifarN. JafarianS. ShahidiS.A. The effects of essential oil Mentha pulegium L. and nisin (free and nanoliposome forms) on inoculated bacterial in minced silver carp fish (Hypophthalmichthys molitrix).J. Food Meas. Charact.20221653935394510.1007/s11694‑022‑01514‑y
    [Google Scholar]
  69. LahlouM. Methods to study the phytochemistry and bioactivity of essential oils.Phytother. Res.200418643544810.1002/ptr.146515287066
    [Google Scholar]
  70. BarkaouiH. ChafikZ. BenabbasR. ChetouaniM. Antifungal activity of the essential oils of Rosmarinus officinalis, Salvia officinalis, Lavandula dentata and Cymbopogon citratus against the mycelial growth of Fusarium oxysporum f. sp. Albedinis.Arabian J. Med. Aromat. Plants202281108133
    [Google Scholar]
  71. BoumaazaB. GacemiA. BenadaM. BoudaliaS. BenzohraI.E. BelaidiH. KhaladiO. Effectiveness of Essential Oils from Three Medicinal Plants Against Bayoud Disease (Fusarium oxysporum f. sp. albedinis) of Date Palm (Phoenix dactylifera L.).Magallat Diyalá Li-l-'ulum al-Zira’iyyat2022142243210.52951/dasj.22142003
    [Google Scholar]
  72. ElhouitiF. BenabedK.H. TahriD. OuintenM. YousfiM. Antioxidant and antifungal activities of essential oils from Algerian spontaneous plants against five strains of Fusarium spp.Hell. Plant Prot. J.2022151303910.2478/hppj‑2022‑0004
    [Google Scholar]
  73. AbouamamaS. NoureddineK. AnisB. YounesE.G. SadikaH. BouchraO. Pathogenicity and biological control of Bayoud disease by Trichoderma longibrachiatum and Artemisia herba-alba essential oil.J. Appl. Pharm. Sci.2018816116710.7324/JAPS.2018.8423
    [Google Scholar]
  74. da Silva BomfimN. NakassugiL.P. Faggion Pinheiro OliveiraJ. KohiyamaC.Y. MossiniS.A.G. GrespanR. NeriloS.B. MallmannC.A. Alves Abreu FilhoB. MachinskiM.Jr Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg.Food Chem.201516633033610.1016/j.foodchem.2014.06.01925053064
    [Google Scholar]
  75. AbouamamaS. AnisB. RymeT. SadikaH. YounesE.G. MoradC. RahmaM. ElaminB.C.M. In Vitro Study of Biocontrol Potential of Rhizospheric Microorganisms Against Fusarium oxysporum f.sp. Albedinis. Pak. J. Phytopathol.2022341273710.33866/phytopathol.034.01.0738
    [Google Scholar]
  76. YangV.W. ClausenC.A. Inhibitory effect of essential oils on decay fungi and mold growth on wood.American Wood Protect. Assoc.200710368
    [Google Scholar]
  77. ZyaniM. MortabitD. El AbedS. RemmalA. KoraichiS.I. Antifungal activity of Five Plant Essential Oils against wood decay fungi isolated from an old house at the Medina of Fez.Int. Res. J. Microbiol.20112104108
    [Google Scholar]
  78. GiordaniR. HadefY. KaloustianJ. Compositions and antifungal activities of essential oils of some Algerian aromatic plants.Fitoterapia200879319920310.1016/j.fitote.2007.11.00418164558
    [Google Scholar]
  79. SoumanouM.M. AdjouE.S. Sweet Fennel (Ocimum gratissimum) Oils.Essential Oils in Food Preservation, Flavor and Safety.AmsterdamElsevier201576577310.1016/B978‑0‑12‑416641‑7.00087‑0
    [Google Scholar]
  80. VellutiA. SanchisV. RamosA.J. EgidoJ. MarínS. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain.Int. J. Food Microbiol.2003892-314515410.1016/S0168‑1605(03)00116‑814623380
    [Google Scholar]
  81. UlteeA. BennikM.H.J. MoezelaarR. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus.Appl. Environ. Microbiol.20026841561156810.1128/AEM.68.4.1561‑1568.200211916669
    [Google Scholar]
  82. Sarwar AlamM. KaurG. JabbarZ. JavedK. AtharM. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity.Food Chem. Toxicol.200745691092010.1016/j.fct.2006.11.01317207565
    [Google Scholar]
  83. RypniewskiW.R. DambmannC. Von Der OstenC. DauterM. WilsonK.S. Structure of inhibited trypsin from Fusarium oxysporum at 1.55 A.Acta Crystallogr D Biol Crystallogr.199551Pt 17385
    [Google Scholar]
  84. HuoH. GuY. CaoY. LiuN. JiaP. KongW. Antifungal activity of camphor against four phytopathogens of Fusarium n.d.Res.Sq.202110.21203/rs.3.rs‑274895/v1
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968296919240926095348
Loading
/content/journals/ccb/10.2174/0122127968296919240926095348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test