Skip to content
2000
image of Use of Essential Oils for the Treatment of Fusarium oxysporum f. sp. Albedinis: Chemical Profile, In Vitro Antifungal Activity, and In Silico Investigation by Molecular Docking Study

Abstract

Background

f. sp. a telluric fungal pathogen commonly found in soils, is the causal agent of fungal vascular wilt of date palms in Moroccan oases. The infection by the pathogen leads to the death of the date palm after six months to two years, which causes enormous economic and environmental damage.

Objective

The framework of this paper is to determine the chemical composition of six essential oils using GC-MS and their antifungal activity on the mycelial growth of f. sp. , as well as the molecular docking study to evaluate the inhibitory potential of fungal trypsin.

Methods

The essential oils were extracted from different parts of the plants (whole plant, flowers, and leaves) by steam distillation, and were identified using gas chromatography-mass spectrometry (GC/MS). The antifungal assay of the extracted essential oils and their main components was assessed using the direct contact method with the fungus at different concentrations; the obtained results were evaluated by calculating the minimum inhibitory concentration (MIC) of each essential oil, followed by an study of the major identified compounds for better understanding of the inhibitory potential against fungal trypsin activity.

Results

The identification of the different bioactive compounds using GC-MS revealed that Eo was characterized by eucalyptol 46.26%, camphor 10.03%, and β-pinene 6.63%; while Eo was endowed by the presence of linalool 14.93%, camphor 14.11%, and linalyl acetate 11.17%. Furthermore, was rich in 1,3,5-cycloheptatriene, 1,6-dimethyl- 36.44%, camphor 22.50%, and α-thujone 7.21%. While was rich in eucalyptol 74.32%, β-Cymene 11.41%, α-Pinene 6.96%. Finally, were both characterized by the presence of D-limonene 20.15%, trans-carveol 19.59%, D-Carvone 14.96%, and pulegone (42.40%), 3-cyclopentene-1-ethanol, 2,2,4-trimethyl- (11.28%), 1,3,4-trimethyl-3-cyclohexenyl-1-carboxaldehyde (9.68%), respectively. Regarding the all Eos from different plants exhibited pronounced antifungal effect. The MIC values recorded for were MIC= 1.75 mg/L, and (MIC= 1.80 mg/L), and (MIC= 1.90 mg/L). The strongest inhibition potential was associated with EO (MIC= 1.15 mg/L) EO (MIC= 1.60 mg/L). As for the computational study performed camphor one of the bioactive compounds showed its ability to act against trypsin which could be considered a potential candidate against f. sp. .

Conclusion

The studied essential oils from different medicinal and aromatic plants showed significant antifungal activity, probably due to the Camphor which could have an inhibitory effect on the f. sp. trypsin. Further research should be conducted for a better understanding of the mechanism of action of these essential oils.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968296919240926095348
2024-10-25
2024-11-22
Loading full text...

Full text loading...

References

  1. Asma N. Salih C. Amar O. Meriem B. Wided A. Chem-ical Composition of Myrtus Communis Essential Oil and its Antifungal Activity on Fusarium Oxysporum f. sp. Albedinis and Fusarium culmorum. Plant Arch. 2022 22 2 310 313 10.51470/PLANTARCHIVES.2022.v22.no2.053
    [Google Scholar]
  2. Meliani H. Makhloufi A. Cherif A. Mahjoubi M. Ma-khloufi K. Biocontrol of toxinogenic Aspergillus flavus and Fusarium oxysporum f. sp. albedinis by two rare Saharan ac-tinomycetes strains and LC-ESI/MS-MS profiling of their an-timicrobial products. Saudi J. Biol. Sci. 2022 29 6 103288 10.1016/j.sjbs.2022.103288 35574281
    [Google Scholar]
  3. Benabbes R. Lahmass I. Souna F. El Youbi M. Saala-oui E. Hakkou A. In Vitro Inhibitory Effect of the Extract Powder of Rosemary (Rosmarinus officinalis), Olender (Neri-um Oleander), Grenadier (Punica Granatum) on the Growth of Fusarium Oxysporum f. sp Albidinis and in Vivo Test An-tagonist Fungi on the Incidence and the control of Vascular wilt Disease of Date Palm in Palm Grove in Figuig South of Morocco. Adv. Environ. Biol. 2015 9 126 132
    [Google Scholar]
  4. Fatiha A. Larbi B. Ahmed M. Amar Y. Nassima F. Khadidja M. The Causal Agent of the Bayoud and Gas Chromatography-Mass Spectrometry Analysis. Adv. Food Sci. 2010 45 21 27
    [Google Scholar]
  5. Khoulassa S. Elmoualij B. Benlyas M. Meziani R. Bouhlali E.D.T. Houria B. Alaoui Y.E.H. Haridas S. Guo J. Lipzen A. Hurtado C.V. Tejomurthula S. Barry K. Grigoriev I.V. Coleman J.J. Ayhan D.H. Ma L.J. Es-sarioui A. High-Quality Draft Nuclear and Mitochondrial Genome Sequence of Fusarium oxysporum f. sp. albedinis strain 9, the Causal Agent of Bayoud Disease on Date Palm. Plant Dis. 2022 106 7 1974 1976 10.1094/PDIS‑01‑22‑0245‑A 35536698
    [Google Scholar]
  6. Ettakifi H. Abbassi K. Maouni S. Erbiai E.H. Rahmouni A. Legssyer M. Saidi R. Lamrani Z. Esteves da Silva J.C.G. Pinto E. Maouni A. Chemical Characteriza-tion and Antifungal Activity of Blue Tansy (Tanacetum an-nuum) Essential Oil and Crude Extracts against Fusarium ox-ysporum f. sp. albedinis, an Agent Causing Bayoud Disease of Date Palm. Antibiotics (Basel) 2023 12 9 1451 10.3390/antibiotics12091451 37760747
    [Google Scholar]
  7. Chibane E. Essarioui A. Ouknin M. Boumezzourh A. Bouyanzer A. Majidi L. Antifungal activity of Asteriscus graveolens (Forssk.) Less essential oil against Fusarium ox-ysporum f. sp. Albedinis, the causal agent of “Bayoud” dis-ease on date palm. J. Chem. 2020 8 456 465
    [Google Scholar]
  8. Rahmouni A. Saidi R. Khaddor M. Pinto E. Da Silva Joaquim Carlos Gomes E. Maouni A. Chemical composi-tion and antifungal activity of five essential oils and their ma-jor components against Fusarium oxysporum f. sp. albedinis of Moroccan palm tree. Euro-Mediterranean Journal for En-vironmental Integration 2019 4 1 27 10.1007/s41207‑019‑0117‑x
    [Google Scholar]
  9. Bouissil S. Guérin C. Roche J. Dubessay P. El Alaoui-Talibi Z. Pierre G. Michaud P. Mouzeyar S. Delattre C. El Modafar C. Induction of Defense Gene Expression and the Resistance of Date Palm to Fusarium oxysporum f. sp. Albedinis in Response to Alginate Extracted from Bifurcaria bifurcata. Mar. Drugs 2022 20 2 88 10.3390/md20020088 35200618
    [Google Scholar]
  10. Rafiqi M. Jelonek L. Diouf A.M. Mbaye A. Rep M. Diarra A. Profile of the in silico secretome of the palm die-back pathogen, Fusarium oxysporum f. sp. albedinis, a fun-gus that puts natural oases at risk. PLoS One 2022 17 5 e0260830 10.1371/journal.pone.0260830 35617325
    [Google Scholar]
  11. Rabach B. Lbekri L. Dihazi A. Meziani R. Benaceur I. Jaiti F. Antifungal activity of Punica granatum root extracts and their potential role to trigger date palm defense reaction against bayoud disease. J. Crop Prot. 2022 2022 471 483
    [Google Scholar]
  12. Houiti E. Inhibition of Fusarium oxysporum f.sp. Albedinis by essential oils of flowers and stems of Rhanterium adpres-sum. Archives 2016 3 141 150
    [Google Scholar]
  13. Oualdi I. Diass K. Azizi S-E. Dalli M. Touzani R. Gseyra N. Rosmarinus officinalis essential oils from Moroc-co: New advances on extraction, GC/MS analysis, and anti-oxidant activity. Nat. Prod. Res. 2022 10.1080/14786419.2022.2111561 35959692
    [Google Scholar]
  14. Zouirech O. Alajmi R. El jeddab, H.; Allali, A.; Bourhia, M.; El Moussaoui, A.; El Barnossi, A.; Ahmed, A.M.; Giesy, J.P.; Aboul-Soud, M.A.M.; Lyoussi, B.; Derwich, E. Chemi-cal Composition and Evaluation of Antifungal and Insecti-cidal Activities of Essential Oils Extracted from Jambosa caryophyllus (Thunb.) Nied: Clove Buds. Evid. Based Complement. Alternat. Med. 2022 2022 1 10 10.1155/2022/4675016 36310621
    [Google Scholar]
  15. Diass K. Brahmi F. Mokhtari O. Abdellaoui S. Ham-mouti B. Biological and pharmaceutical properties of essen-tial oils of Rosmarinus officinalis L. and Lavandula officinalis L. Mater. Today Proc. 2021 45 7768 7773 10.1016/j.matpr.2021.03.495
    [Google Scholar]
  16. Brahmi F. Mokhtari O. Legssyer B. Hamdani I. Aseh-raou A. Hasnaoui I. Rokni Y. Diass K. Oualdi I. Ta-hani A. Chemical and biological characterization of essential oils extracted from citrus fruits peels. Mater. Today Proc. 2021 45 7794 7799 10.1016/j.matpr.2021.03.587
    [Google Scholar]
  17. Yusuf U. Jmohi U. Zaura A. Sanna M. Ahmad M. An overview of the antibacterial properties of Mentha pulegium. Preprint 2022 10.13140/RG.2.2.15636.68489
    [Google Scholar]
  18. Dalli M. Azizi S. Benouda H. Azghar A. Tahri M. Bouammali B. Maleb A. Gseyra N. Molecular Composi-tion and Antibacterial Effect of Five Essential Oils Extracted from Nigella sativa L. Seeds against Multidrug-Resistant Bac-teria: A Comparative Study. Evid. Based Complement. Alternat. Med. 2021 2021 1 9 10.1155/2021/6643765 33790979
    [Google Scholar]
  19. Locke T. Colhoun J. Contributions to a Method of Testing Oil Palm Seedlings for Resistance to Fusarium oxysporum Schl. f. sp. elaeidts Toovey 1). J. Phytopathol. 1974 79 1 77 92 10.1111/j.1439‑0434.1974.tb02691.x
    [Google Scholar]
  20. Neri F. Mari M. Brigati S. Control of Penicillium expan-sum by plant volatile compounds. Plant Pathol. 2006 55 1 100 105 10.1111/j.1365‑3059.2005.01312.x
    [Google Scholar]
  21. Bhattacharya R. Sourirajan A. Sharma P. Kumar A. Upadhyay N.K. Shukla R.K. Dev K. Krishnakumar B. Singh M. Bose D. Bioenhancer potential of Aegle marmelos (L.) Corrêa essential oil with antifungal drugs and its mode of action against Candida albicans. Biocatal. Agric. Biotechnol. 2023 48 102647 10.1016/j.bcab.2023.102647
    [Google Scholar]
  22. Saxena S. Uniyal V. Bhatt R.P. Inhibitory effect of essen-tial oils against Trichosporon ovoides causing Piedra Hair In-fection. Braz. J. Microbiol. 2012 43 4 1347 1354 10.1590/S1517‑83822012000400016 24031963
    [Google Scholar]
  23. Bhattacharya R. Sharma P. Bose D. Singh M. Synergistic potential of α-Phellandrene combined with conventional anti-fungal agents and its mechanism against antibiotic resistant Candida albicans. CABI Agriculture and Bioscience 2024 5 1 17 10.1186/s43170‑024‑00218‑1
    [Google Scholar]
  24. Hmouni A. Hajlaoui M.R. Mlaiki A. Resistance de Bofrytis cinerea aux benzimidazoles et aux dicarboximides dans les cultures abritees de tomate en Tunisie. Bulletin OEPP/EPPO 1996 26 697 705
    [Google Scholar]
  25. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and Auto-DockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  26. Prakash V. Gabrani R. An Insight into Emerging Phyto-compounds for Glioblastoma Multiforme Therapy. Cardiovasc. Hematol. Agents Med. Chem. 2023 22 71910 10.2174/0118715257262003231031171910 37957904
    [Google Scholar]
  27. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, effi-cient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  28. Rypniewski W.R. Østergaard P.R. Nørregaard-Madsen M. Dauter M. Wilson K.S. Fusarium oxysporum trypsin at atomic resolution at 100 and 283 K: A study of ligand bind-ing. Acta Crystallogr. D Biol. Crystallogr. 2001 57 1 8 19 10.1107/S0907444900014116 11134922
    [Google Scholar]
  29. Becke A.D. A new mixing of Hartree–Fock and local densi-ty-functional theories. J. Chem. Phys. 1993 98 2 1372 1377 10.1063/1.464304
    [Google Scholar]
  30. Zaki H. Belhassan A. Aouidate A. Lakhlifi T. Benlyas M. Bouachrine M. Antibacterial study of 3-(2-amino-6-phenylpyrimidin-4-yl)-N-cyclopropyl-1-methyl-1H-indole-2-carboxamide derivatives: CoMFA, CoMSIA analyses, mo-lecular docking and ADMET properties prediction. J. Mol. Struct. 2019 1177 275 285 10.1016/j.molstruc.2018.09.073
    [Google Scholar]
  31. Elamrani A. Zrira S. Benjilali B. Berrada M. A study of moroccan rosemary oils. J. Essent. Oil Res. 2011 2000 9572 10.1080/10412905.2000.9699572
    [Google Scholar]
  32. Derwich E. Benziane Z. Chabir R. Taouil R. In vitro antibacterial activity and GC/MS analysis of the essential oil extract of leaves of Rosmarinus officinalis grown in Morocco. Int. J. Pharm. Pharm. Sci. 2011 3 89 95
    [Google Scholar]
  33. Zaouali Y. Bouzaine T. Boussaid M. Essential oils com-position in two Rosmarinus officinalis L. varieties and inci-dence for antimicrobial and antioxidant activities. Food Chem. Toxicol. 2010 48 11 3144 3152 10.1016/j.fct.2010.08.010 20728499
    [Google Scholar]
  34. Wang W. Li N. Luo M. Zu Y. Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 2012 17 3 2704 2713 10.3390/molecules17032704
    [Google Scholar]
  35. Diass K. Oualdi I. Dalli M. Azizi S. Mohamed M. Gseyra N. Touzani R. Hammouti B. Artemisia herba alba Essential Oil: GC/MS analysis, antioxidant activities with molecular docking on S protein of SARS-CoV-2. Indonesian J. Sci. Technol. 2022 8 1 1 18 10.17509/ijost.v8i1.50737
    [Google Scholar]
  36. Ed-Dra A. Filali F.R. Lo Presti V. Zekkori B. Nalbone L. Elsharkawy E.R. Bentayeb A. Giarratana F. Effective-ness of essential oil from the Artemisia herba-alba aerial parts against multidrug-resistant bacteria isolated from food and hospitalized patients. Biodiversitas (Surak.) 2021 22 7 2995 3005 10.13057/biodiv/d220753
    [Google Scholar]
  37. Messaoudi Moussii I. Nayme K. Timinouni M. Jamaled-dine J. Filali H. Hakkou F. Synergistic antibacterial effects of Moroccan Artemisia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils. Synergy 2020 10 100057 10.1016/j.synres.2019.100057
    [Google Scholar]
  38. Ougui̇rti̇ N. Bahri̇ F. Bouyahyaoui̇ A. Wanner J. Chemi-cal characterization and bioactivities assessment of Artemisia herba-alba Asso essential oil from South-western Algeria. Nat. Volatiles Essen. Oils 2021 8 2 27 36 10.37929/nveo.844309
    [Google Scholar]
  39. Hudaib M.M. Aburjai T.A. Composition of the essential oil from Artemisia herba-alba grown in jordan. J. Essent. Oil Res. 2006 18 3 301 304 10.1080/10412905.2006.9699096
    [Google Scholar]
  40. Amri I. De Martino L. Marandino A. Lamia H. Mohsen H. Scandolera E. De Feo V. Mancini E. Chemical compo-sition and biological activities of the essential oil from Arte-misia herba-alba growing wild in Tunisia. Nat. Prod. Commun. 2013 8 3 1934578X1300800 10.1177/1934578X1300800333 23678823
    [Google Scholar]
  41. Diass K. Merzouki M. Elfazazi K. Azzouzi H. Challioui A. Azzaoui K. Hammouti B. Touzani R. Depeint F. Ayerdi Gotor A. Rhazi L. Essential Oil of Lavandula offic-inalis: Chemical Composition and Antibacterial Activities. Plants 2023 12 7 1571 10.3390/plants12071571 37050197
    [Google Scholar]
  42. Moussi Imane M. Houda F. Said Amal A.H. Kaotar N. Mohammed T. Imane R. Farid H. Phytochemical Compo-sition and Antibacterial Activity of Moroccan Lavandula an-gustifolia Mill. J. Essent. Oil-Bear. Plants 2017 20 4 1074 1082 10.1080/0972060X.2017.1363000
    [Google Scholar]
  43. Alnamer R. Alaoui K. Houcine Bouidida E. Benjouad A. Cherrah Y. Toxicity and Psychotropic Activity of Essential Oils of Rosmarinus officinalis and Lavandula officinalis from Morocco. J. Biol. Active Prod. Nat. 2011 1 4 262 272 10.1080/22311866.2011.10719093
    [Google Scholar]
  44. Talbaoui A. Chemical composition and antibacterial activity of essential oils from six Moroccan plants J. Med. Plants Res. 2012 6 31 078 10.5897/JMPR10.078
    [Google Scholar]
  45. Slimani C. Sqalli H. Rais C. Farah A. Lazraq A. Ghadraoui L.E.L. Belmalha S. Echchgadda G. Chemical composition and evaluation of biological effects of essential oil and aqueous extract of Lavandula angustifolia L. Not. Sci. Biol. 2022 14 1 11172 10.15835/nsb14111172
    [Google Scholar]
  46. Kirimer N. Mokhtarzadeh S. Demirci B. Goger F. Kha-war K.M. Demirci F. Phytochemical profiling of volatile components of Lavandula angustifolia Miller propagated under in vitro conditions. Ind. Crops Prod. 2017 96 120 125 10.1016/j.indcrop.2016.11.061
    [Google Scholar]
  47. Zenão S. Aires A. Dias C. Saavedra M.J. Fernandes C. Antibacterial potential of Urtica dioica and Lavandula an-gustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers. J. Herb. Med. 2017 10 53 58 10.1016/j.hermed.2017.05.003
    [Google Scholar]
  48. Śmigielski K.B. Prusinowska R. Krosowiak K. Sikora M. Comparison of qualitative and quantitative chemical compo-sition of hydrolate and essential oils of lavender (Lavandula angustifolia). J. Essent. Oil Res. 2013 25 4 291 299 10.1080/10412905.2013.775080
    [Google Scholar]
  49. Prusinowska R. Śmigielski K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L). A review. Herba Pol. 2014 60 2 56 66 10.2478/hepo‑2014‑0010
    [Google Scholar]
  50. Hassiotis C.N. Ntana F. Lazari D.M. Poulios S. Vla-chonasios K.E. Environmental and developmental factors affect essential oil production and quality of Lavandula an-gustifolia during flowering period. Ind. Crops Prod. 2014 62 359 366 10.1016/j.indcrop.2014.08.048
    [Google Scholar]
  51. Despinasse Y. Moja S. Soler C. Jullien F. Pasquier B. Bessière J.M. Baudino S. Nicolè F. Nicolè F. Structure of the chemical and genetic diversity of the true lavender over its natural range. Plants 2020 9 12 1640 10.3390/plants9121640 33255497
    [Google Scholar]
  52. Crișan I. Ona A. Vârban D. Muntean L. Vârban R. Stoie A. Mihăiescu T. Morea A. Current Trends for Lav-ender (Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality. Plants 2023 12 2 357 10.3390/plants12020357 36679071
    [Google Scholar]
  53. Ait-Ouazzou A. Lorán S. Bakkali M. Laglaoui A. Rota C. Herrera A. Pagán R. Conchello P. Chemical composi-tion and antimicrobial activity of essential oils of Thymus al-geriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J. Sci. Food Agric. 2011 91 14 2643 2651 10.1002/jsfa.4505 21769875
    [Google Scholar]
  54. Harkat-Madouri L. Asma B. Madani K. Bey-Ould Si Said Z. Rigou P. Grenier D. Allalou H. Remini H. Ad-jaoud A. Boulekbache-Makhlouf L. Chemical composition, antibacterial and antioxidant activities of essential oil of Eu-calyptus globulus from Algeria. Ind. Crops Prod. 2015 78 148 153 10.1016/j.indcrop.2015.10.015
    [Google Scholar]
  55. Usman L.A. Oguntoye O.S. Ismaeel R.O. Phytochemical profile, antioxidant and antidiabetic potential of essential oil from fresh and dried leaves of Eucalyptus globulus. J. Chil. Chem. Soc. 2022 67 1 5453 5461 10.4067/S0717‑97072022000105453
    [Google Scholar]
  56. Damjanović-Vratnica B. Đakov T. Šuković D. Damja-nović J. Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech J. Food Sci. 2011 29 3 277 284 10.17221/114/2009‑CJFS
    [Google Scholar]
  57. Luís Â. Duarte A. Gominho J. Domingues F. Duarte A.P. Chemical composition, antioxidant, antibacterial and an-ti-quorum sensing activities of Eucalyptus globulus and Eu-calyptus radiata essential oils. Ind. Crops Prod. 2016 79 274 282 10.1016/j.indcrop.2015.10.055
    [Google Scholar]
  58. Fadil M. Farah A. Ihssane B. Lebrazi S. Chraibi M. Haloui T. The screening of parameters influencing the hy-drodistillation of Moroccan Mentha piperita L. leaves by ex-perimental design methodology. J. Mater. Environ. Sci. 2016 7 1445 1453
    [Google Scholar]
  59. Chraibi M. Elamin O. Lebrazi S. Farah A. Iraqui M. Antimycobacterial, Antifungal and Radical Scavenging Ef-fects of Essential Oil from Moroccan Mentha piperita. Pharma Chem. 2017 9 21 6 9
    [Google Scholar]
  60. Hamad Al-Mijalli S. ELsharkawy, E.R.; Abdallah, E.M.; Hamed, M.; El Omari, N.; Mahmud, S.; Alshahrani, M.M.; Mrabti, H.N.; Bouyahya, A. Determination of Volatile Com-pounds of Mentha piperita and Lavandula multifida and In-vestigation of Their Antibacterial, Antioxidant, and Antidia-betic Properties. Evid. Based Complement. Alternat. Med. 2022 2022 1 9 10.1155/2022/9306251 35747375
    [Google Scholar]
  61. İşcan G. Ki̇ri̇mer N. Kürkcüoǧlu M. Demi̇rci̇ F. Antimi-crobial screening of Mentha piperita essential oils. Journal of Agricultural Food and Chemistry. J. Agric. Food Chem. 2002 50 14 3943 3946 10.1021/jf011476k
    [Google Scholar]
  62. Giménez-Santamarina S. Llorens-Molina J.A. Sempere-Ferre F. Santamarina C. Roselló J. Santamarina M.P. Chemical composition of essential oils of three Mentha spe-cies and their antifungal activity against selected phytopatho-genic and post-harvest fungi. All Life 2022 15 1 64 73 10.1080/26895293.2021.2022007
    [Google Scholar]
  63. Jayaram C.S. Chauhan N. Dolma S.K. Reddy S.G.E. Chemical Composition and Insecticidal Activities of Essen-tial Oils against the Pulse Beetle. Molecules 2022 27 2 568 10.3390/molecules27020568 35056883
    [Google Scholar]
  64. Gourich A.A. Bencheikh N. Bouhrim M. Regragui M. Rhafouri R. Drioiche A. Asbabou A. Remok F. Moura-di A. Addi M. Hano C. Zair T. Comparative Analysis of the Chemical Composition and Antimicrobial Activity of Four Moroccan North Middle Atlas Medicinal Plants’ Essen-tial Oils: Rosmarinus officinalis L., Mentha pulegium L., Sal-via officinalis L., and Thymus zygis subsp. gracilis (Boiss.) R. Morales. Chemistry 2022 4 4 1775 1788 10.3390/chemistry4040115
    [Google Scholar]
  65. Ez-Zriouli R. El Yacoubi H. Imtara H. El-Hessni A. Mesfioui A. Tarayrah M. Mothana R.A. Noman O.M. Mouhsine F. Rochdi A. Chemical composition and antimi-crobial activity of essential oils from Mentha pulegium and Rosmarinus officinalis against multidrug-resistant microbes and their acute toxicity study. Open Chem. 2022 20 1 694 702 10.1515/chem‑2022‑0185
    [Google Scholar]
  66. Bekka-Hadji F. Bombarda I. Djoudi F. Bakour S. Touati A. Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essen-tial Oils and Antibiotic against Multi-Drug Resistant Bacteria. Molecules 2022 27 3 1095 10.3390/molecules27031095 35164360
    [Google Scholar]
  67. Mahboubi M. Haghi G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008 119 2 325 327 10.1016/j.jep.2008.07.023 18703127
    [Google Scholar]
  68. Pouryousef N. Ahmady M. Shariatifar N. Jafarian S. Shahidi S.A. The effects of essential oil Mentha pulegium L. and nisin (free and nanoliposome forms) on inoculated bac-terial in minced silver carp fish (Hypophthalmichthys moli-trix). J. Food Meas. Charact. 2022 16 5 3935 3945 10.1007/s11694‑022‑01514‑y
    [Google Scholar]
  69. Lahlou M. Methods to study the phytochemistry and bioac-tivity of essential oils. Phytother. Res. 2004 18 6 435 448 10.1002/ptr.1465 15287066
    [Google Scholar]
  70. Barkaoui H. Chafik Z. Benabbas R. Chetouani M. Anti-fungal activity of the essential oils of Rosmarinus officinalis, Salvia officinalis, Lavandula dentata and Cymbopogon citra-tus against the mycelial growth of Fusarium oxysporum f. sp. Albedinis. Arabian J. Med. Aromat. Plants 2022 8 1 108 133
    [Google Scholar]
  71. Boumaaza B. Gacemi A. Benada M. Boudalia S. Ben-zohra I.E. Belaidi H. Khaladi O. Effectiveness of Essen-tial Oils from Three Medicinal Plants Against Bayoud Dis-ease (Fusarium oxysporum f. sp. albedinis) of Date Palm (Phoenix dactylifera L.). Magallat Diyalá Li-l-'ulum al-Zira’iyyat 2022 14 2 24 32 10.52951/dasj.22142003
    [Google Scholar]
  72. Elhouiti F. Benabed K.H. Tahri D. Ouinten M. Yousfi M. Antioxidant and antifungal activities of essential oils from Algerian spontaneous plants against five strains of Fusarium spp. Hell. Plant Prot. J. 2022 15 1 30 39 10.2478/hppj‑2022‑0004
    [Google Scholar]
  73. Abouamama S. Noureddine K. Anis B. Younes E.G. Sadika H. Bouchra O. Pathogenicity and biological control of Bayoud disease by Trichoderma longibrachiatum and Ar-temisia herba-alba essential oil. J. Appl. Pharm. Sci. 2018 8 161 167 10.7324/JAPS.2018.8423
    [Google Scholar]
  74. da Silva Bomfim N. Nakassugi L.P. Faggion Pinheiro Oliveira J. Kohiyama C.Y. Mossini S.A.G. Grespan R. Nerilo S.B. Mallmann C.A. Alves Abreu Filho B. Machinski M. Jr Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.). Nirenberg. Food Chem. 2015 166 330 336 10.1016/j.foodchem.2014.06.019 25053064
    [Google Scholar]
  75. Abouamama S. Anis B. Ryme T. Sadika H. Younes E.G. Morad C. Rahma M. Elamin B.C.M. In Vitro Study of Biocontrol Potential of Rhizospheric Microorganisms Against Fusarium oxysporum f.sp. Albedinis. Pak. J. Phytopathol. 2022 34 1 27 37 10.33866/phytopathol.034.01.0738
    [Google Scholar]
  76. Yang V.W. Clausen C.A. Inhibitory effect of essential oils on decay fungi and mold growth on wood. American Wood Protect. Assoc. 2007 103 6 8
    [Google Scholar]
  77. Zyani M. Mortabit D. El Abed S. Remmal A. Koraichi S.I. Antifungal activity of Five Plant Essential Oils against wood decay fungi isolated from an old house at the Medina of Fez. Int. Res. J. Microbiol. 2011 2 104 108
    [Google Scholar]
  78. Giordani R. Hadef Y. Kaloustian J. Compositions and antifungal activities of essential oils of some Algerian aro-matic plants. Fitoterapia 2008 79 3 199 203 10.1016/j.fitote.2007.11.004 18164558
    [Google Scholar]
  79. Soumanou M.M. Adjou E.S. Sweet Fennel (Ocimum gratis-simum) Oils.Essential Oils in Food Preservation, Flavor and Safety. Amsterdam Elsevier 2015 765 773 10.1016/B978‑0‑12‑416641‑7.00087‑0
    [Google Scholar]
  80. Velluti A. Sanchis V. Ramos A.J. Egido J. Marín S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol. 2003 89 2-3 145 154 10.1016/S0168‑1605(03)00116‑8 14623380
    [Google Scholar]
  81. Ultee A. Bennik M.H.J. Moezelaar R. The phenolic hy-droxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002 68 4 1561 1568 10.1128/AEM.68.4.1561‑1568.2002 11916669
    [Google Scholar]
  82. Sarwar Alam M. Kaur G. Jabbar Z. Javed K. Athar M. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food Chem. Toxicol. 2007 45 6 910 920 10.1016/j.fct.2006.11.013 17207565
    [Google Scholar]
  83. Rypniewski W.R. Dambmann C. Von Der Osten C. Dau-ter M. Wilson K.S. Structure of inhibited trypsin from Fusarium oxysporum at 1.55 A. Acta Crystallogr. D Biol. Crystallogr. 1995 51 Pt 1 73 85
    [Google Scholar]
  84. Huo H. Gu Y. Cao Y. Liu N. Jia P. Kong W. Antifungal activity of camphor against four phytopathogens of Fusarium n.d Res.Sq. 2021 10.21203/rs.3.rs‑274895/v1
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968296919240926095348
Loading
/content/journals/ccb/10.2174/0122127968296919240926095348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test