Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Diabetic retinopathy (DR) is the leading cause of vision loss in diabetic patients. Currently, the treatment involves the use of glucocorticoids or a VEGF antagonist, which are “off-label” at present. However, the conventional method of drug discovery and development is a time-consuming process that requires more than a decade of meticulous research and huge financial support. While there are a few effective small organic molecules against DR that were identified many years ago, nutraceuticals - naturally available functional foods containing vitamins, antioxidants, minerals, fatty acids, and amino acids - can also help delay the progression of some diseases.

Methods

In this study, 43 phytochemical constituents from four medicinal plants were tested for their binding affinity to the influential VEGFR2 target of diabetic retinopathy. The study used a computational approach, molecular docking study, structure-based drug design approach, MSD (Molecular Dynamic Simulation analysis), ADME(T) studies.

Results

The study reported that all phytochemical constituents displayed good to the highest binding affinity than the standard ruboxistaurin. Six phytochemical constituents, namely terchebulin, pedunculagin, punicalagin, punicalin, casuariniane, and chebulagic acid, exhibited equipotent to higher activity than the standard. These constituents displayed conventional hydrogen bonds, pi-alkyl, and pi-cation interactions to achieve their high binding affinity. The highest binding scores were chosen for analysis using MSD, ensuring stability of the ligand-protein complex. Pharmacodynamic and pharmacokinetic properties were evaluated, and their safety profile was validated.

Conclusion

This screening study suggests that active phytomolecules present in medicinal plants may inhibit the VEGFR2 target. The best-docked compounds, possessing drug-like properties, can be used to develop potential inhibitors against DR or to mitigate its severity.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968307102241007054913
2024-10-23
2025-05-04
Loading full text...

Full text loading...

References

  1. SrivastavaP. TiwariA. A new insight of herbal promises against ocular disorders: An occuloinformatics approach.Curr. Top. Med. Chem.201516663465410.2174/156802661566615081910571626286213
    [Google Scholar]
  2. AliciaJ. Biomarkers in diabetic retinopathy.Rev. Diabet. Stud.2019121-2159195
    [Google Scholar]
  3. WinfriedM. Diabetic retinopathy and diabetic macular oedema pathways and management. UK Consensus Working Group.Eye (Lond.)202034115131541215
    [Google Scholar]
  4. MbW.J.H. FracoJ.P.B. FracpP.Z. MbbsH.K. MrcpR.T. RaperL.R. Diabetic retinopathy in a natural population.Aust. J. Ophthalmol.198311317517910.1111/j.1442‑9071.1983.tb01075.x6196010
    [Google Scholar]
  5. KleinR. KleinB.E.K. MossS.E. DavisM.D. DeMetsD.L. The Wisconsin epidemiologic study of diabetic retinopathy. IV. Diabetic macular edema.Ophthalmology198491121464147410.1016/S0161‑6420(84)34102‑16521986
    [Google Scholar]
  6. KobayashiS. NagaoM. AsaiA. Izumi Fukuda, Shinichi Oikawa. Severity and multiplicity of microvascular complications are associatebd with QT interval prolongation in patients with type 2 diabetes.J. Diabetes Investig.2018994695110.1111/jdi.1277229095573
    [Google Scholar]
  7. Global Burden of Disease Study 20192020https://vizhub.healthdata.org/gbd-results/
  8. HainsworthD.P. BebuI. AielloL.P. SivitzW. Gubitosi-KlugR. MaloneJ. WhiteN.H. DanisR. WalliaA. GaoX. BarkmeierA.J. DasA. PatelS. GardnerT.W. LachinJ.M. Risk factors for retinopathy in type 1 diabetes: The DCCT/EDIC study.Diabetes Care201942587588210.2337/dc18‑230830833368
    [Google Scholar]
  9. SongK.H. JeongJ.S. KimM.K. KwonH.S. BaekK.H. KoS.H. AhnY.B. Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus.J. Diabetes Investig.201910374575210.1111/jdi.1295330300472
    [Google Scholar]
  10. EstacioR.O. McFarlingE. BiggerstaffS. JeffersB.W. JohnsonD. SchrierR.W. Overt albuminuria predicts diabetic retinopathy in Hispanics with NIDDM.Am. J. Kidney Dis.199831694795310.1053/ajkd.1998.v31.pm96318389631838
    [Google Scholar]
  11. ChewE.Y. DavisM.D. DanisR.P. LovatoJ.F. PerdueL.H. GrevenC. GenuthS. GoffD.C. LeiterL.A. Ismail-BeigiF. AmbrosiusW.T. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes. the ACCORD eye study.Ophthalmology2014121122443245110.1016/j.ophtha.2014.07.01925172198
    [Google Scholar]
  12. KaštelanS. TomićM. Gverović AntunicaA. LjubićS. Salopek RabatićJ. KarabatićM. Body mass index: A risk factor for retinopathy in type 2 diabetic patients.Mediators Inflamm.201320131810.1155/2013/43632924347825
    [Google Scholar]
  13. WongT.Y. SunJ. KawasakiR. RuamviboonsukP. GuptaN. LansinghV.C. MaiaM. MathengeW. MorekerS. MuqitM.M.K. ResnikoffS. VerdaguerJ. ZhaoP. FerrisF. AielloL.P. TaylorH.R. Guidelines on diabetic eye care: The international council of ophthalmology recommendations for screening, follow‐up, referral, and treatment based on resource settings.Ophthalmology2018125101608162210.1016/j.ophtha.2018.04.00729776671
    [Google Scholar]
  14. SolomonS.D. ChewE. DuhE.J. SobrinL. SunJ.K. VanderBeekB.L. WykoffC.C. GardnerT.W. Diabetic retinopathy: A position statement by the American diabetes association.Diabetes Care201740341241810.2337/dc16‑264128223445
    [Google Scholar]
  15. HamiltonR.C. Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic Retinopathy study research group.Arch. Ophthalmol.1985103121796180610.1001/archopht.1985.010501200300152866759
    [Google Scholar]
  16. LandersM.B.III StefanssonE. WolbarshtM.L. Panretinal photocoagulation and retinal oxygenation.Retina19822316717510.1097/00006982‑198200230‑000076891097
    [Google Scholar]
  17. NauckM. RothM. TammM. EickelbergO. WielandH. StulzP. PerruchoudA.P. Induction of vascular endothelial growth factor by platelet-activating factor and platelet-derived growth factor is downregulated by corticosteroids.Am. J. Respir. Cell Mol. Biol.199716439840610.1165/ajrcmb.16.4.91157509115750
    [Google Scholar]
  18. BresnickG.H. MyersF.L. Vitrectomy surgery for diabetic retinopathy.Annu. Rev. Med.197930133133810.1146/annurev.me.30.020179.001555400500
    [Google Scholar]
  19. MarshallG. GargS.K. JacksonW.E. HolmesD.L. ChaseH.P. Factors influencing the onset and progression of diabetic retinopathy in subjects with insulin-dependent diabetes mellitus.Ophthalmology199310081133113910.1016/S0161‑6420(13)31517‑68341492
    [Google Scholar]
  20. Lopes de FariaJ.M. JalkhA.E. TrempeC.L. McmeelJ.W. Diabetic macular edema, risk factors and concomitants.Acta Ophthalmol. Scand.199977217017510.1034/j.1600‑0420.1999.770211.x10321533
    [Google Scholar]
  21. DanserA.H.J. Van Den DorpelM.A. DeinumJ. DerkxF.H.M. FrankenA.A.M. PeperkampE. De JongP.T.V.M. SchalekampM.A.D.H. Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy.J. Clin. Endocrinol. Metab.198968116016710.1210/jcem‑68‑1‑1602642484
    [Google Scholar]
  22. WilliamsB. BakerA.Q. GallacherB. LodwickD. Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells.Hypertension199525591391710.1161/01.HYP.25.5.9137737726
    [Google Scholar]
  23. FunatsuH. YamashitaH. IkedaT. NakanishiY. KitanoS. HoriS. Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with diabetic macular edema and other retinal disorders.Am. J. Ophthalmol.2002133453754310.1016/S0002‑9394(02)01323‑511931788
    [Google Scholar]
  24. ShibuyaM. YamaguchiS. YamaneA. IkedaT. TojoA. MatsushimeH. SatoM. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family.Oncogene1990545195242158038
    [Google Scholar]
  25. HolmesK. RobertsO.L. ThomasA.M. CrossM.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition.Cell. Signal.200719102003201210.1016/j.cellsig.2007.05.01317658244
    [Google Scholar]
  26. AntonettiD.A. BarberA.J. HollingerL.A. WolpertE.B. GardnerT.W. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors.J. Biol. Chem.199927433234632346710.1074/jbc.274.33.2346310438525
    [Google Scholar]
  27. ShweikiD. ItinA. SofferD. KeshetE. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.Nature1992359639884384510.1038/359843a01279431
    [Google Scholar]
  28. AielloL.P. AveryR.L. ArriggP.G. KeytB.A. JampelH.D. ShahS.T. PasqualeL.R. ThiemeH. IwamotoM.A. ParkJ.E. NguyenH.V. AielloL.M. FerraraN. KingG.L. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders.N. Engl. J. Med.1994331221480148710.1056/NEJM1994120133122037526212
    [Google Scholar]
  29. KeckP.J. HauserS.D. KriviG. SanzoK. WarrenT. FederJ. ConnollyD.T. Vascular permeability factor, an endothelial cell mitogen related to PDGF.Science198924649351309131210.1126/science.24799872479987
    [Google Scholar]
  30. LeungD.W. CachianesG. KuangW.J. GoeddelD.V. FerraraN. Vascular endothelial growth factor is a secreted angiogenic mitogen.Science198924649351306130910.1126/science.24799862479986
    [Google Scholar]
  31. DiabeticT. StudyR. Preliminary report on effects of photocoagulation therapy.Am. J. Ophthalmol.197681438339610.1016/0002‑9394(76)90292‑0944535
    [Google Scholar]
  32. RiaskoffS. Photocoagulation treatment of proliferative diabetic retinopathy.Bull. Soc. Belge Ophtalmol.19811979176182936
    [Google Scholar]
  33. YangJ. MiaoX. YangF.J. CaoJ.F. LiuX. FuJ.L. SuG.F. Therapeutic potential of curcumin in diabetic retinopathy. (Review)Int. J. Mol. Med.20214757510.3892/ijmm.2021.490833693955
    [Google Scholar]
  34. MatosA.L. BrunoD.F. AmbrósioA.F. SantosP.F. The benefits of flavonoids in diabetic retinopathy.Nutrients20201210316910.3390/nu1210316933081260
    [Google Scholar]
  35. ZhangM. YangJ. ZhaoX. ZhaoY. ZhuS. Network pharmacology and molecular docking study on the active ingredients of qidengmingmu capsule for the treatment of diabetic retinopathy.Sci. Rep.2021111738210.1038/s41598‑021‑86914‑833795817
    [Google Scholar]
  36. YeX. FungN.S.K. LamW.C. LoA.C.Y. Nutraceuticals for diabetic retinopathy: Recent advances and novel delivery systems.Nutrients20241611171510.3390/nu1611171538892648
    [Google Scholar]
  37. ParveenA. KimJ.H. OhB.G. SubediL. KhanZ. KimS.Y. Phytochemicals: Target-based therapeutic strategies for diabetic retinopathy.Molecules2018237151910.3390/molecules2307151929937497
    [Google Scholar]
  38. OsaadonP. FaganX.J. LifshitzT. LevyJ. A review of anti-VEGF agents for proliferative diabetic retinopathy.Eye (Lond.)201428551052010.1038/eye.2014.1324525867
    [Google Scholar]
  39. BaligaM.N. PrabhuA.N. PrabhuD.A. ShivashankaraA.R. AbrahamA. PalattyP.L. Antidiabetic and cardioprotective effects of Amla (Emblica officinalis Gaertn) and its Phytochemicals: Bioactive food as dietary interventions for diabetes.Academic Press201358360010.1016/B978‑0‑12‑397153‑1.00039‑1
    [Google Scholar]
  40. Hassan BulbulM.R. Uddin ChowdhuryM.N. NaimaT.A. SamiS.A. ImtiajM.S. HudaN. UddinM.G. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz.Heliyon202288e1022010.1016/j.heliyon.2022.e1022036051270
    [Google Scholar]
  41. AlagarsamyV. SundarP.S. SolomonV.R. MurugesanS. Muzaffar-Ur-RehmanM. KulkarniV.S. SulthanaM.T. NarendharB. SabareesG. Computational screening of some phytochemicals to identify best modulators for ligand binding domain of Estrogen receptor Alpha.Curr. Pharm. Des.202430201599160910.2174/011381612828743124040804573238698754
    [Google Scholar]
  42. AlagarsamyV. ShyamsundarP. NarendharB. SulthanaM.T. SolomonV.R. AishwaryaA.D. RavikumarV. ManiR. KunchuK. GopinathM. NivedhithaS. ParthibanP. Screening of some Ayurvedic phytochemicals to identify potential inhibitors against SARS-CoV-2 Mpro by in silico computational approach.Antiinfect. Agents2024225e15032422802910.2174/0122113525255835240107162255
    [Google Scholar]
  43. AlagarsamyV. SolomonV.R. MurugesanS. SundarP.S. Muzaffar-Ur-RehmanM. ChanduA. AishwaryaA.D. NarendharB. SulthanaM.T. RavikumarV. In silico screening of some active phytochemicals to identify promising inhibitors against SARS-CoV-2 targets.Curr. Drug Discov. Technol.2024213e09102322190610.2174/011570163824322223092005105037861016
    [Google Scholar]
  44. AlagarsamyV. SundarP.S. NarendharB. SulthanaM.T. KulkarniV.S. AishwaryaA.D. SolomonV.R. MurugesanS. JubieS. RohithaK. DhanwarS. An in silico investigation to identify promising inhibitors for SARS-CoV-2 Mpro target.Med. Chem.202319992593810.2174/157340641966623041311280237069723
    [Google Scholar]
  45. Veerachamy AlagarsamyV. SolomonR. NarendharN. SulthanaM T. Shyam SundarP. Molecular docking, Molecular dynamics, and ADMET investigation of selected phytochemicals as promising inhibitors of SARS-CoV-19 targets Pharmakeftiki,20233512647
    [Google Scholar]
  46. MatrellaM.L. VallettiA. MarraF. MallamaciC. CoccoT. MuscoloA. Phytochemicals from red onion, grown with eco-sustainable fertilizers, protect mammalian cells from oxidative stress, increasing their viability.Molecules20222719636510.3390/molecules2719636536234903
    [Google Scholar]
  47. RCSB Protein Data Bank (RCSB PDB)Available from: https://www.rcsb.org
  48. AlagarsamyV. Shyam SundarP. Raja SolomonV. NarendharB. SulthanaM.T. RohithaK. DhanwarS. Dharshini AishwaryaA. MurugesanS. Pharmacophore modelling-based drug repurposing approaches for monkeypox therapeutics.J. Biomol. Struct. Dyn.20234120106781068910.1080/07391102.2023.218842836905675
    [Google Scholar]
  49. AlagarsamyV. SolomonV.R. SundarP.S. KulkarniV.S. SulthanaM.T. AishwaryaA.D. NarendharB. MurugesanS. Computational search for potential COVID-19 Drugs from Ayurvedic medicinal plants to identify potential inhibitors against SARS-CoV-2 targets.Curr. Computeraided Drug Des.2023191516710.2174/157340991966622111714540436424783
    [Google Scholar]
  50. PerkinElmerInformaticshttpAvailable from: www.cambridgesoft.com/Ensemble_for_Chemistry/details/Default.aspx?fid=16
  51. KriegerE. VriendG. YASARA View—Molecular graphics for all devices—From smartphones to workstations.Bioinformatics201430202981298210.1093/bioinformatics/btu42624996895
    [Google Scholar]
  52. Maestro-Desmond Interoperability tools; schrödinger: New York,2020
    [Google Scholar]
  53. HeineckeA. Molecular Dynamics Simulation, Supercomputing for Molecular Dynamics Simulations.Springer Briefs in Computer Science20151129
    [Google Scholar]
  54. BanksJ.L. Integrated Modeling Program, Applied Chemical Theory (IMPACT).J. Comput. Chem.2005 Dec261617521780
    [Google Scholar]
  55. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑8
    [Google Scholar]
  56. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  57. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  58. VeikkolaT. KarkkainenM. Claesson-WelshL. AlitaloK. Regulation of angiogenesis via vascular endothelial growth factor receptors.Cancer Res.200060220321210667560
    [Google Scholar]
  59. YoshijiH. KuriyamaS. WaysD.K. YoshiiJ. MiyamotoY. KawataM. IkenakaY. TsujinoueH. NakataniT. ShibuyaM. FukuiH. Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis.Cancer Res.199959174413441810485491
    [Google Scholar]
  60. SimóR. HernándezC. Intravitreous anti-VEGF for diabetic retinopathy: Hopes and fears for a new therapeutic strategy.Diabetologia20085191574158010.1007/s00125‑008‑0989‑918404258
    [Google Scholar]
  61. WitmerA. VrensenG.F. Van NoordenC.J. SchlingemannR.O. Vascular endothelial growth factors and angiogenesis in eye disease.Prog. Retin. Eye Res.200322112910.1016/S1350‑9462(02)00043‑512597922
    [Google Scholar]
  62. CrockerD.J. MuradT.M. GeerJ.C. Role of the pericyte in wound healing.Exp. Mol. Pathol.1970131516510.1016/0014‑4800(70)90084‑55459855
    [Google Scholar]
  63. HeierJ.S. AntoszykA.N. PavanP.R. LeffS.R. RosenfeldP.J. CiullaT.A. DreyerR.F. GentileR.C. SyJ.P. HantsbargerG. ShamsN. Ranibizumab for treatment of neovascular age-related macular degeneration: A phase I/II multicenter, controlled, multidose study.Ophthalmology20061134633642.e410.1016/j.ophtha.2005.10.05216483659
    [Google Scholar]
  64. GuptaN. MansoorS. SharmaA. SapkalA. ShethJ. FalatoonzadehP. KuppermannB.D. KenneyM.C. Diabetic retinopathy and VEGF.Open Ophthalmol. J.20137141010.2174/187436410130701000423459241
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968307102241007054913
Loading
/content/journals/ccb/10.2174/0122127968307102241007054913
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test