Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Background: 5-Flurorouracil (5-FU) chemotherapy has been one of the extensively employed standard therapies for the treatment of colon cancer. Various molecular interventions and dose modulations in the form of adjuvant therapies has been exploited for better therapeutic efficacy and low adverse effects to improve overall survival rate in advanced colorectal cancer. Non-steroidal anti-inflammatory drugs (NSAIDs) have shown huge potential to supplement the classical chemotherapeutic regimens in order to achieve better cytotoxic potency against cancer cells and specifically through targeting of multi apoptotic pathways and inflammatory markers. Methods: The present investigation was carried out to study the effect of etodolac (ETD) on the therapeutic spectrum of 5-FU in colon cancer in order to regress the dose related adverse potential by modulating the 5-FU dose in 1,2 dimethylhydrazine (DMH) induced colon cancer rats and to explore the molecular apoptotic pathways involved. Results: Diverse dose combination therapy of 5-FU plus ETD (FEC1; high dose combination of 5-FU and ETD in ratio of 4:1), FEC2; medium dose combination of 5-FU and ETD in ratio of 3:1) and (FEC3; low dose combination of 5-FU and ETD in ratio of 2:1) showed significant decrease in the tumor burden in a dose dependent manner (i.e. FEC1>FEC2>FEC3) in comparison to monotherapy. Further, the combination therapy also showed significantly enhanced apoptosis in DMH induced colon cancer rats in comparison to monotherapy. Conclusions: ETD could be a useful intervention as adjuvant therapy for increasing the cytotoxic potential of 5-FU at lower therapeutic dose. The present study showed the immense application and future role of ETD as an adjuvant agent in fluorouracil based combination strategy to widen therapeutic spectrum and increased apoptosis in cancer cells. To best of our knowledge, this report for the first time elucidates the enhanced therapeutic efficacy of low dose 5-FU in combination with ETD via nuclear factor kappa-B (NF-ΚB), peroxisome proliferator activator receptor-gamma (PPAR-γ), tumor necrosis factoralpha (TNF-α) and cyclooxygenase–II (COX-II) pathway in DMH induced colon cancer rats.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/2212697X03666160118233255
2016-10-01
2024-11-23
Loading full text...

Full text loading...

/content/journals/ccand/10.2174/2212697X03666160118233255
Loading

  • Article Type:
    Research Article
Keyword(s): 5-FU; Colon cancer; COX-II inhibitor; DMH; ETD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test