Newer chemical entities are created and synthesis has been made feasible by a variety of computer-aided drug design (CAAD) techniques. In addition to facilitating the visualisation of the ligand-target binding process, the application of in silico methodologies and structure-based drug design (SBDD) allows for the prediction of receptor affinities and significant binding pocket locations.
Objective
The goal of the current study was to identify new quinoline derivatives by computational methods specially designed to bind the EGFR receptor in the treatment of breast cancer.
Materials and Methods
ChemAxon Marvin Sketch 5.11.5 was used to create derivatives of quinolines. The admetSAR online web tools and SwissADME were utilised to forecast the toxicity and pharmacokinetic characteristics of several substances. A multitude of software programmes, such as Autodock 1.1.2, MGL Tools 1.5.6, Procheck, Protparam ExPasy tool, PyMOL, and Biovia Discovery Studio Visualizer v20.1.0.19295 were also employed to ascertain the ligand-receptor interactions between quinoline derivatives and the target receptor (PDB -5GNK).
Result
Almost all components were shown to be less hazardous, orally consumable and to have the appropriate pharmacokinetic characteristics based on in silico study. All newly generated derivative compounds have higher docking scores when compared to the widely used medication sorafenib.
Conclusion
Interactions with quinoline analogues boost binding energy and the number of H-bonds produced, making them a suitable place to start when creating compounds for further exploration. The quinoline moiety increases its potential as a novel therapy alternative for breast cancer and could facilitate more comprehensive in vivo, in vitro, chemical-based, and pharma studies by medicinal chemists.
Lombardino
J.G.
Lowe
J.A.
The role of the medicinal chemist in drug discovery — Then and now.
Nat. Rev. Drug Discov.2004
3
10
853
862
10.1038/nrd1523
15459676
Gioiello
A.
Piccinno
A.
Lozza
A.M.
Cerra
B.
The medicinal chemistry in the era of machines and automation: Recent advances in continuous flow technology.
J. Med. Chem.2020
63
13
6624
6647
10.1021/acs.jmedchem.9b01956
32049517
Roughley
S.D.
Jordan
A.M.
The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates.
J. Med. Chem.2011
54
10
3451
3479
10.1021/jm200187y
21504168
GLOBOCAN 2022: Latest global cancer data shows rising incidence and stark inequities.
2024
Available from: https://www.uicc.org/news/globocan-2022-latest-global-cancer-data-shows-rising-incidence-and-stark-inequities
Siegel
R.
Miller
K.
Fuchs
H.E.
Jemal
A.
Cancer statistics, 2022.
CA Cancer J. Clin.2022
72
1
7
33
10.3322/caac.21708
35020204
Valcarcel-Jimenez
L.
Frezza
C.
Fumarate hydratase (FH) and cancer: A paradigm of oncometabolism.
Br. J. Cancer2023
129
10
1546
1557
10.1038/s41416‑023‑02412‑w
37689804
Reitman
Z.J
Yan
H.
Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism.
J. Natl. Cancer Inst.
102
13
932
941
10.1093/jnci/djq187
Schiliro
C.
Firestein
B.L.
Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation.
Cells2021
10
5
1056
10.3390/cells10051056
33946927
Wu
W.
Zhao
S.
Metabolic changes in cancer: Beyond the Warburg effect.
Acta Biochim. Biophys. Sin. (Shanghai)2013
45
1
18
26
10.1093/abbs/gms104
23257292
Ferlay
J.
Colombet
M.
Soerjomataram
I.
Parkin
D.M.
Piñeros
M.
Znaor
A.
Bray
F.
Cancer statistics for the year 2020: An overview.
Int. J. Cancer2021
149
4
778
789
10.1002/ijc.33588
33818764
Nakai
K.
Hung
M.C.
Yamaguchi
H.
A perspective on anti-EGFR therapies targeting triple-negative breast cancer.
Am. J. Cancer Res.2016
6
8
1609
1623
27648353
Nielsen
T.O.
Hsu
F.D.
Jensen
K.
Cheang
M.
Karaca
G.
Hu
Z.
Hernandez-Boussard
T.
Livasy
C.
Cowan
D.
Dressler
L.
Akslen
L.A.
Ragaz
J.
Gown
A.M.
Gilks
C.B.
van de Rijn
M.
Perou
C.M.
Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma.
Clin. Cancer Res.2004
10
16
5367
5374
10.1158/1078‑0432.CCR‑04‑0220
15328174
Maennling
A.E.
Tur
M.K.
Niebert
M.
Klockenbring
T.
Zeppernick
F.
Gattenlöhner
S.
Meinhold-Heerlein
I.
Hussain
A.F.
Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials.
Cancers (Basel)2019
11
12
1826
10.3390/cancers11121826
31756933
Hori
A.
Shimoda
M.
Naoi
Y.
Kagara
N.
Tanei
T.
Miyake
T.
Shimazu
K.
Kim
S.J.
Noguchi
S.
Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer.
Breast Cancer Res.2019
21
1
88
10.1186/s13058‑019‑1167‑3
31387614
Tiwari
S.R.
Mishra
P.
Raska
P.
Calhoun
B.
Abraham
J.
Moore
H.
Budd
G.T.
Fanning
A.
Valente
S.
Stewart
R.
Grobmyer
S.R.
Montero
A.J.
Retrospective study of the efficacy and safety of neoadjuvant docetaxel, carboplatin, trastuzumab/pertuzumab (TCH-P) in nonmetastatic HER2-positive breast cancer.
Breast Cancer Res. Treat.2016
158
1
189
193
10.1007/s10549‑016‑3866‑0
27324504
Xu
Z.
Zhang
Y.
Li
N.
Liu
P.
Gao
L.
Gao
X.
Tie
X.
Efficacy and safety of lapatinib and trastuzumab for HER2-positive breast cancer: A systematic review and meta-analysis of randomised controlled trials.
BMJ Open2017
7
3
e013053
10.1136/bmjopen‑2016‑013053
28289045
Geyer
C.E.
Forster
J.
Lindquist
D.
Chan
S.
Romieu
C.G.
Pienkowski
T.
Jagiello-Gruszfeld
A.
Crown
J.
Chan
A.
Kaufman
B.
Skarlos
D.
Campone
M.
Davidson
N.
Berger
M.
Oliva
C.
Rubin
S.D.
Stein
S.
Cameron
D.
Lapatinib plus capecitabine for HER2-positive advanced breast cancer.
N. Engl. J. Med.2006
355
26
2733
2743
10.1056/NEJMoa064320
17192538
Baselga
J.
Bradbury
I.
Eidtmann
H.
Di Cosimo
S.
de Azambuja
E.
Aura
C.
Gómez
H.
Dinh
P.
Fauria
K.
Van Dooren
V.
Aktan
G.
Goldhirsch
A.
Chang
T.W.
Horváth
Z.
Coccia-Portugal
M.
Domont
J.
Tseng
L.M.
Kunz
G.
Sohn
J.H.
Semiglazov
V.
Lerzo
G.
Palacova
M.
Probachai
V.
Pusztai
L.
Untch
M.
Gelber
R.D.
Piccart-Gebhart
M.
Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): A randomised, open-label, multicentre, phase 3 trial.
Lancet2012
379
9816
633
640
10.1016/S0140‑6736(11)61847‑3
22257673
Mohamad
A.D.M.
Abualreish
M.J.A.
Abu-Dief
A.M.
Temperature and salt effects of the kinetic reactions of substituted 2-pyridylmethylene-8-quinolyl iron (II) complexes as antimicrobial, anti-cancer, and antioxidant agents with cyanide ions.
Can. J. Chem.2021
99
9
763
772
10.1139/cjc‑2020‑0412
El-Remaily
M.A.E.A.A.A.
Abu-Dief
A.M.
Elhady
O.
Green synthesis of TiO 2 nanoparticles as an efficient heterogeneous catalyst with high reusability for synthesis of 1,2‐dihydroquinoline derivatives.
Appl. Organomet. Chem.2019
33
8
e5005
10.1002/aoc.5005
Shiro
T.
Fukaya
T.
Tobe
M.
The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review.
Eur. J. Med. Chem.2015
97
397
408
10.1016/j.ejmech.2014.12.004
25532473
Mukherjee
S.
Pal
M.
Medicinal chemistry of quinolines as emerging anti-inflammatory agents: An overview.
Curr. Med. Chem.2013
20
35
4386
4410
10.2174/09298673113209990170
23862618
Moodley
R.
Mashaba
C.
Rakodi
G.
Ncube
N.
Maphoru
M.
Balogun
M.
Jordan
A.
Warner
D.
Khan
R.
Tukulula
M.
New quinoline–urea–benzothiazole hybrids as promising antitubercular agents: Synthesis, in vitro antitubercular activity, cytotoxicity studies, and in silico ADME profiling.
Pharmaceuticals (Basel)2022
15
5
576
10.3390/ph15050576
35631402
Govindarao
K.
Sriniwasan
N.
Suresh
R.
Quinoline conjugated 2-azetidinone derivatives as anti-breast cancer agents: In vitro antiproliferative and anti-EGFR activities, molecular docking and in-silico drug likeliness studies.
J. Saudi Chem. Soc.2022
26
3
101471
10.1016/j.jscs.2022.101471
Hamdy
R.
Elseginy
S.A.
Ziedan
N.I.
Jones
A.T.
Westwell
A.D.
New quinoline-based heterocycles as anticancer agents targeting bcl-2.
Molecules2019
24
7
1274
10.3390/molecules24071274
30986908
Abner
E.
Stoszko
M.
Zeng
L.
Chen
H.C.
Izquierdo-Bouldstridge
A.
Konuma
T.
Zorita
E.
Fanunza
E.
Zhang
Q.
Mahmoudi
T.
Zhou
M.M.
Filion
G.J.
Jordan
A.
A new quinoline BRD4 inhibitor targets a distinct latent HIV-1 reservoir for reactivation from other “shock” drugs.
J. Virol.2018
92
10
e02056-17
10.1128/JVI.02056‑17
29343578
Afzal
O.
Kumar
S.
Haider
M.R.
Ali
M.R.
Kumar
R.
Jaggi
M.
Bawa
S.
A review on anticancer potential of bioactive heterocycle quinoline.
Eur. J. Med. Chem.2015
97
871
910
10.1016/j.ejmech.2014.07.044
Tomasz
K.
Sylwia
F.
Adamowicz
J.
Szeliski
K.
Quinolones as a potential drug in genitourinary cancer treatment.
Front. Oncol.2022
12
890337
10.3389/fonc.2022.890337
35756639
Shagufta
S.
Ahmad
I.
An insight into the therapeutic potential of quinazoline derivatives as anticancer agents.
MedChemComm2017
8
5
871
885
10.1039/C7MD00097A
30108803
Marella
A.
Tanwar
O.P.
Saha
R.
Ali
M.R.
Srivastava
S.
Akhter
M.
Shaquiquzzaman
M.
Alam
M.M.
Quinoline: A versatile heterocyclic.
Saudi Pharm. J.2013
21
1
1
12
10.1016/j.jsps.2012.03.002
23960814
Mhaske
G.S.
Sen
A.K.
Shah
A.
Khiste
R.H.
Dale
A.V.
Sen
D.B.
In silico identification of novel quinoline-3-carboxamide derivatives targeting platelet-derived growth factor receptor.
Curr. Cancer Ther. Rev.2022
18
2
131
142
10.2174/1573394718666220421111546
Verma
C.
Quraishi
M.A.
Ebenso
E.E.
Quinoline and its derivatives as corrosion inhibitors: A review.
Surf. Interfaces2020
21
100634
10.1016/j.surfin.2020.100634
Ilakiyalakshmi
M.
Arumugam Napoleon
A.
Review on recent development of quinoline for anticancer activities.
Arab. J. Chem.2022
15
11
104168
10.1016/j.arabjc.2022.104168
Bharti
A.
Bijauliya
R.K.
Yadav
A.
Suman
The chemical and pharmacological advancements of quinoline: A mini review.
J. Drug Deliv. Ther.2022
12
4
211
215
10.22270/jddt.v12i4.5561
Ibrahim
D.A.
Abou El Ella
D.A.
El-Motwally
A.M.
Aly
R.M.
Motwally
E.
Rasha
M.A.
Molecular design and synthesis of certain new quinoline derivatives having potential anticancer activity.
Eur. J. Med. Chem.2015
102
115
131
10.1016/j.ejmech.2015.07.030
Daina
A.
Michielin
O.
Zoete
V.
SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.
Sci. Rep.2017
7
1
42717
10.1038/srep42717
28256516
Kapetanovic
M.
Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach.
Chem. Biol. Interact.2008
171
2
165-176
176
10.1016/j.cbi.2006.12.006
Umar
A.B.
Uzairu
A.
Shallangwa
G.A.
Uba
S.
Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods.
SN Appl. Sci.2020
2
5
815
10.1007/s42452‑020‑2620‑8
Das
T.
Mehta
C.H.
Nayak
U.Y.
Multiple approaches for achieving drug solubility: An in silico perspective.
Drug Discov. Today2020
25
7
1206
1212
10.1016/j.drudis.2020.04.016
32353425
Abdullahi
M.
Adeniji
S.E.
In silico molecular docking and ADME/pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents.
Chemistry Africa2020
3
4
989
1000
10.1007/s42250‑020‑00162‑3
Aljohani
F.S.
El-Dabea
T.
El-Khatib
R.M.
Abdou
A.
Alzahrani
S.
Omar Barnawi
I.
El-Remaily
M.A.E.A.A.A.
Abu-Dief
A.M.
Innovation, structural inspection for new mixed complexes: DNA binding, biomedical applications and molecular docking approaches.
J. Taibah Univ. Sci.2024
18
1
2350087
10.1080/16583655.2024.2350087
Trott
O.
Olson
A.J.
AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.
J. Comput. Chem.2010
31
2
455
461
10.1002/jcc.21334
19499576
Gasteiger
E.
Hoogland
C.
Gattiker
A.
Duvaud
S.
Wilkins
M.
Protein identification and analysis tools on the expasy server.
The Proteomics Protocols Handbook
Humana Press
Walker
J.M.
2005
571
607
10.1385/1‑59259‑890‑0:571
25.2.6. PROCHECK: Validation of protein-structure coordinates.
2006
Available from: https://onlinelibrary.wiley.com/iucr/itc/Fa/ch25o2v0001/sec25o2o6/
Daina
A.
Zoete
V.
A BOILED‐Egg to predict gastrointestinal absorption and brain penetration of small molecules.
ChemMedChem2016
11
11
1117
1121
10.1002/cmdc.201600182
27218427
Colovos
C.
Yeates
T.O.
Verification of protein structures: Patterns of nonbonded atomic interactions.
Protein Sci.1993
2
9
1511
1519
10.1002/pro.5560020916
8401235
Bowie
J.U.
Lüthy
R.
Eisenberg
D.
A method to identify protein sequences that fold into a known three-dimensional structure.
Science1991
253
5016
164
170
10.1126/science.1853201
1853201
Laskowski
R.A.
MacArthur
M.W.
Moss
D.S.
Thornton
J.M.
PROCHECK: A program to check the stereochemical quality of protein structures.
J. Appl. Cryst.1993
26
2
283
291
10.1107/S0021889892009944
Laskowski
R.
Rullmann
J.A.C.
MacArthur
M.
Kaptein
R.
Thornton
J.
AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR.
J. Biomol. NMR1996
8
4
477
486
10.1007/BF00228148
9008363
Eisenberg
D.
Bowie
J.U.
Lüthy
R.
Choe
S.
Three-dimensional profiles for analysing protein sequence–structure relationships.
Faraday Discuss.1992
93
93
25
34
10.1039/FD9929300025
1290936
Kitchen
D.B.
Decornez
H.
Furr
J.R.
Bajorath
J.
Docking and scoring in virtual screening for drug discovery: methods and applications.
Nat. Rev. Drug Discov.2004
3
11
935
949
10.1038/nrd1549
15520816
Li
J.
Pan
Y.Y.
Zhang
Y.
Synergistic interaction between sorafenib and gemcitabine in EGFR-TKI-sensitive and EGFR-TKI-resistant human lung cancer cell lines.
Oncol. Lett.2013
5
2
440
446
10.3892/ol.2012.1017
23420122
Iyer
R.
Fetterly
G.
Lugade
A.
Thanavala
Y.
Sorafenib: A clinical and pharmacologic review.
Expert Opin. Pharmacother.2010
11
11
1943
1955
10.1517/14656566.2010.496453
20586710
Tian
S.
Wang
J.
Li
Y.
Li
D.
Xu
L.
Hou
T.
The application of in silico drug-likeness predictions in pharmaceutical research.
Adv. Drug Deliv. Rev.2015
86
2
10
10.1016/j.addr.2015.01.009
25666163
Daina
A.
Michielin
O.
Zoete
V.
iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach.
J. Chem. Inf. Model.2014
54
12
3284
3301
10.1021/ci500467k
25382374
Lipinski
C.A.
Lombardo
F.
Dominy
B.W.
Feeney
P.J.
Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.
Adv. Drug Deliv. Rev.2001
46
1-3
3
26
10.1016/S0169‑409X(00)00129‑0
11259830