Skip to content
2000
image of Efficacy Assessment of Sulfated Flavanol Functionalized Silver Nanoparticles against MCF-7 Breast Cancer

Abstract

Aim

The present research work aims to formulate a cost-effective and less toxic drug for specific and selective delivery at the tumor site.

Background

Existing therapeutics, such as chemo, surgery, etc., for fast-paced MCF-7 breast cancer, still face challenges, especially due to their toxic side effects. The unique properties of metal nanoparticles embedded in anti-oxidant plant polymers have sparked great interest in the formulation of less toxic-targeted drugs for cancer cure.

Objective

The present work aims to synthesize a targeted formulation of colloidal nanosilver by surface engineering of silver nanoparticles using plant polymers in electrolytic deposition technique, developed indigenously at the institute lab.

Methods

A current is passed through an elctrolyte, AgNO, which splits it into ions. The positive ions of Ag deposit over LDPE wrapped carbon cathode and negative ion, NO, is liberated. Ag+ ions get capped in-situ. These surface-modified silver nanoparticles formulate a colloidal solution. UV-visible and FTIR spectroscopy, TEM-EDX, and XRD were used to validate as-prepared formulation and in vivo human tumor xenograft model in NOD-SCID mouse for efficacy against MCF-7 breast cancer.

Results

The as-synthesized formulation consists of pure spherical poly-dispersed silver nanoparticles of average size 5.4 nm, coated with sulphated flavanols. The efficacy evaluation reported that it significantly, T/C = 0.53, reduced tumor volumes with a 100% survival rate and change in animal body weight <4 gms.

Conclusion

The as-synthesized formulation can be used as a potential neo-adjuvant or adjuvant drug along with existing therapeutics for MCF-7 breast cancer, significantly reducing the toxicity and cost.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X345534241121082505
2024-12-02
2025-01-19
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Elsori D. Pandey P. Ramniwas S. Kumar R. Lakhanpal S. Rab S.O. Siddiqui S. Singh A. Saeed M. Khan F. Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics. Front. Pharmacol. 2024 15 1406619 10.3389/fphar.2024.1406619 38957397
    [Google Scholar]
  3. Peralta-Zaragoza O. Bermúdez-Morales V.H. Pérez-Plasencia C. Salazar-León J. Gómez-Cerón C. Madrid-Marina V. Targeted treatments for cervical cancer: a review. OncoTargets Ther. 2012 5 315 328 10.2147/OTT.S25123 23144564
    [Google Scholar]
  4. Brahmer J.R. National Comprehensive Cancer Network. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2012 36 17 1714 1768
    [Google Scholar]
  5. Bourke P. Ziuzina D. Han L. Cullen P.J. Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017 123 2 308 324 10.1111/jam.13429 28245092
    [Google Scholar]
  6. Pandey P. Khan F. Qari H.A. Oves M. Rutin (Bioflavonoid) as Cell Signaling Pathway Modulator: Prospects in Treatment and Chemoprevention. Pharmaceuticals (Basel) 2021 14 11 1069 10.3390/ph14111069 34832851
    [Google Scholar]
  7. Bhattacharya D. Gupta R.K. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 2005 25 4 199 204 10.1080/07388550500361994 16419617
    [Google Scholar]
  8. Al Abboud M.A. Mashraqi A. Qanash H. Gattan H.S. Felemban H.R. Alkorbi F. Alawlaqi M.M. Abdelghany T.M. Moawad H. Green biosynthesis of bimetallic ZnO@AuNPs with its formulation into cellulose derivative: biological and environmental applications. Bioresour. Bioprocess. 2024 11 1 60 10.1186/s40643‑024‑00759‑3 38884830
    [Google Scholar]
  9. Alghonaim M.I. Alsalamah S.A. Mohammad A.M. Green synthesis of bimetallic Se@TiO2NPs and their formulation into biopolymers and their utilization as antimicrobial, anti-diabetic, antioxidant, and healing agent in vitro. Biomass Conv Bioref 2024 10.1007/s13399‑024‑05451‑2
    [Google Scholar]
  10. Qanash H. Bazaid A. Aldarhami A. Alharbi B. Almashjary M. Hazzazi M. Felemban H. Abdelghany T. Phytochemical characterization and efficacy of Artemisia judaica extract loaded chitosan nanoparticles as inhibitors of cancer proliferation and microbial growth. Polymers (Basel) 2023 15 2 391 10.3390/polym15020391 36679271
    [Google Scholar]
  11. Al-Rajhi A.M.H. Abdelghany T.M. Almuhayawi M.S. Alruhaili M.H. Al Jaouni S.K. Selim S. The green approach of chitosan/Fe2O3/ZnO-nanocomposite synthesis with an evaluation of its biological activities. Applied Biological Chemistry 2024 67 1 75 10.1186/s13765‑024‑00926‑2
    [Google Scholar]
  12. Habeeb Rahuman H.B. Dhandapani R. Narayanan S. Palanivel V. Paramasivam R. Subbarayalu R. Thangavelu S. Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022 16 4 115 144 10.1049/nbt2.12078 35426251
    [Google Scholar]
  13. Sharma V.K. Yngard R.A. Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009 145 1-2 83 96 10.1016/j.cis.2008.09.002 18945421
    [Google Scholar]
  14. Abdelghany T.M. Al-Rajhi A.M.H. Al Abboud M.A. Alawlaqi M.M. Ganash Magdah A. Helmy E.A.M. Mabrouk A.S. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. Bionanoscience 2018 8 1 5 16 10.1007/s12668‑017‑0413‑3
    [Google Scholar]
  15. Goodsell D.S. Bionanotechnology: lessons from nature. John Wiley & Sons 2004 10.1002/0471469572
    [Google Scholar]
  16. Khan F. Pandey P. Verma M. Ramniwas S. Lee D. Moon S. Park M.N. Upadhyay T.K. Kim B. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy. Biomed. Pharmacother. 2024 173 116363 10.1016/j.biopha.2024.116363 38479184
    [Google Scholar]
  17. Sadeghi B. Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 134 310 315 10.1016/j.saa.2014.06.046 25022503
    [Google Scholar]
  18. Abd El-Ghany T.M. Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indones. J. Biotechnol. 2013 18 2 75 82
    [Google Scholar]
  19. Dwivedi A.D. Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp. 2010 369 1-3 27 33 10.1016/j.colsurfa.2010.07.020
    [Google Scholar]
  20. Santhoshkumar T. Rahuman A.A. Rajakumar G. Marimuthu S. Bagavan A. Jayaseelan C. Zahir A.A. Elango G. Kamaraj C. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res. 2011 108 3 693 702 10.1007/s00436‑010‑2115‑4 20978795
    [Google Scholar]
  21. Ahmed S. Ahmad M. Swami B.L. Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016 7 1 17 28 10.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  22. Magnusson M.H. Deppert K. Malm J-O. Bovin J-O. Samuelson L. gold nanoparticles: production, reshaping, and thermal charging. J. Nanopart. Res. 1999 1 2 243 251 10.1023/A:1010012802415
    [Google Scholar]
  23. Iravani S. Korbekandi H. Mirmohammadi S.V. Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 2014 9 6 385 406 26339255
    [Google Scholar]
  24. Thakkar K.N. Mhatre S.S. Parikh R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine (Lond.) 2010 6 2 257 262 10.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  25. Vaidyanathan R. Kalishwaralal K. Gopalram S. Gurunathan S. RETRACTED: Nanosilver — The burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv. 2009 27 6 924 937 10.1016/j.biotechadv.2009.08.001 19686832
    [Google Scholar]
  26. Pandey P. Ramniwas S. Verma M. Rautela I. Khan F. Shah M.A. A comprehensive review uncovering the anticancerous potential of genkwanin (plant-derived compound) in several human carcinomas. Open Chem. 2024 22 1 20240003 10.1515/chem‑2024‑0003
    [Google Scholar]
  27. Kopustinskiene D.M. Jakstas V. Savickas A. Bernatoniene J. Flavonoids as Anticancer Agents. Nutrients 2020 12 2 457 10.3390/nu12020457 32059369
    [Google Scholar]
  28. Kikuchi H. Yuan B. Hu X. Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am. J. Cancer Res. 2019 9 8 1517 1535 31497340
    [Google Scholar]
  29. Khan A.U. Dagur H.S. Khan M. Malik N. Alam M. Mushtaque M. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives. European Journal of Medicinal Chemistry Reports 2021 3 100010 10.1016/j.ejmcr.2021.100010
    [Google Scholar]
  30. Mir S.A. Dar A. Hamid L. Nisar N. Malik J.A. Ali T. Bader G.N. Flavonoids as promising molecules in the cancer therapy: An insight. Current Research in Pharmacology and Drug Discovery 2024 6 100167 10.1016/j.crphar.2023.100167 38144883
    [Google Scholar]
  31. Asnaashari S. Amjad E. Sokouti B. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review. Cancer Cell Int. 2023 23 1 211 10.1186/s12935‑023‑03052‑z 37743502
    [Google Scholar]
  32. Pandey P. Khan F. Ramniwas S. Saeed M. Ahmad I. A mechanistic review of the pharmacological potential of narirutin: a dietary flavonoid. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 8 5449 5461 10.1007/s00210‑024‑03022‑w 38457040
    [Google Scholar]
  33. Sysak S. Czarczynska-Goslinska B. Szyk P. Koczorowski T. Mlynarczyk D.T. Szczolko W. Lesyk R. Goslinski T. Metal Nanoparticle-Flavonoid Connections: Synthesis, Physicochemical and Biological Properties, as Well as Potential Applications in Medicine. Nanomaterials (Basel) 2023 13 9 1531 10.3390/nano13091531 37177076
    [Google Scholar]
  34. Li Z. Le W. Cui Z. A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion. Cell Death Discov. 2018 4 1 108 10.1038/s41420‑018‑0122‑x
    [Google Scholar]
  35. Yau A. Lee J. Chen Y. Nanomaterials for protein delivery in anticancer applications. Pharmaceutics 2021 13 2 155 10.3390/pharmaceutics13020155 33503889
    [Google Scholar]
  36. Shweta Rajawat M.S. 2014
  37. Wang H. Li X. Liu X. Shen D. Qiu Y. Zhang X. Song J. Influence of PH, concentration and light on stability of allicin in garlic (Allium sativum L.) aqueous extract as measured by UPLC. J. Sci. Food Agric. 2015 95 9 1838 1844 10.1002/jsfa.6884 25205359
    [Google Scholar]
  38. Hu W. Xiao S. Deng H. Luo W. Deng L. Thermodynamic Properties of Nano-Silver and Alloy Particles. Silver Nanoparticles. InTech 2010
    [Google Scholar]
  39. Gupta D. Chauhan P. Green synthesis of silver nanoparticles involving extract of plants of different taxonomic groups. J. Nanomed. Res. 2017 5 2 00110
    [Google Scholar]
  40. Rajawat S. Qureshi M.S. Electrolytic Deposition of Silver Nanoparticles Under “Principles of Green Chemistry”. Arab. J. Sci. Eng. 2014 39 1 563 568 10.1007/s13369‑013‑0879‑4
    [Google Scholar]
  41. Shweta R. Rajnish K. Rajukumar K. Shreyas P. Sonali S. Qureshi M.S. Study of anti-cancer properties of green silver nanoparticles against MCF-7 breast cancer cell lines. Green Process Synth 2016 5 173 181
    [Google Scholar]
  42. Chandran S.P. Chaudhary M. Pasricha R. Ahmad A. Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 2006 22 2 577 583 10.1021/bp0501423 16599579
    [Google Scholar]
  43. Khodashenas B. Ghorbani H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 2019 12 8 1823 1838 10.1016/j.arabjc.2014.12.014
    [Google Scholar]
  44. Effects of Surfactant and Polymer on the Morphology of Advanced Nanomaterials in Aqueous Solution Int. J. Electrochem. Sci. 2012 8 1 204 218
    [Google Scholar]
  45. El-Kheshen A.A. El-Rab S.F.G. Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity Pharm. Chem 2012 4 1 53 65
    [Google Scholar]
  46. Jiang, 2011, X. C. Jiang, W. M. Chen, C. Y. Chen, S.X. Xiong, A.B. Yu Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett. 2011 6 3
    [Google Scholar]
  47. Kim D. Jeong S. Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 2006 17 16 4019 4024 10.1088/0957‑4484/17/16/004 21727531
    [Google Scholar]
  48. Shervani Z. Ikushima Y. Sato M. Kawanami H. Hakuta Y. Yokoyama T. Nagase T. Kuneida H. Aramaki K. Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym. Sci. 2008 286 4 403 410 10.1007/s00396‑007‑1784‑8
    [Google Scholar]
  49. Ciapina E.G. dos Santos M.L. Santos R.M.I.S. Palombarini J. Almeida Júnior O.P. Santana J.C.C.C. Modesto D.A. Lanfredi A.J.C. Santos S.F. On the lattice dilation of palladium nanoparticles and a new methodology for the quantification of interstitials. J. Alloys Compd. 2021 881 160628 10.1016/j.jallcom.2021.160628
    [Google Scholar]
  50. Wasserman H.J. Vermaak J.S. On the determination of a lattice contraction in very small silver particles. Surf. Sci. 1970 22 1 164 172 10.1016/0039‑6028(70)90031‑2
    [Google Scholar]
  51. Prakash P. Gnanaprakasam P. Emmanuel R. Arokiyaraj S. Saravanan M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B Biointerfaces 2013 108 255 259 10.1016/j.colsurfb.2013.03.017 23563291
    [Google Scholar]
  52. Niraimathi K.L. Sudha V. Lavanya R. Brindha P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces 2013 102 288 291 10.1016/j.colsurfb.2012.08.041 23006568
    [Google Scholar]
  53. Restrepo C.V. Villa C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag. 2021 15 100428 10.1016/j.enmm.2021.100428
    [Google Scholar]
  54. Sidhu A.K. Verma N. Kaushal P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Frontiers in Nanotechnology 2022 3 801620 10.3389/fnano.2021.801620
    [Google Scholar]
  55. Guilger-Casagrande M. Germano-Costa T. Bilesky-José N. Pasquoto-Stigliani T. Carvalho L. Fraceto L.F. de Lima R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J. Nanobiotechnology 2021 19 1 53 10.1186/s12951‑021‑00797‑5 33627148
    [Google Scholar]
  56. Hasan K.M.F. Xiaoyi L. Shaoqin Z. Horváth P.G. Bak M. Bejó L. Sipos G. Alpár T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon 2022 8 12 e12322 10.1016/j.heliyon.2022.e12322 36590481
    [Google Scholar]
  57. Shume W.M. Murthy H.C.A. Zereffa E.A. A Review on Synthesis and Characterization of Ag 2 O Nanoparticles for Photocatalytic Applications. J. Chem. 2020 2020 1 15 10.1155/2020/5039479
    [Google Scholar]
  58. Al-Zahrani S. Astudillo-Calderón S. Pintos B. Pérez-Urria E. Manzanera J.A. Martín L. Gomez-Garay A. Role of Synthetic Plant Extracts on the Production of Silver-Derived Nanoparticles. Plants 2021 10 8 1671 10.3390/plants10081671 34451715
    [Google Scholar]
  59. Zaheer Z. Rafiuddin, Silver nanoparticles to self-assembled films: Green synthesis and characterization. Colloids Surf. B Biointerfaces 2012 90 48 52 10.1016/j.colsurfb.2011.09.037 22055624
    [Google Scholar]
  60. Hema J.A. Malaka R. Muthukumarasamy N.P. Sambandam A. Subramanian S. Sevanan M. Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications. IET Nanobiotechnol. 2016 10 5 288 294 10.1049/iet‑nbt.2015.0103 27676376
    [Google Scholar]
  61. Siddiqi K.S. Husen A. Rao R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology 2018 16 1 14 10.1186/s12951‑018‑0334‑5 29452593
    [Google Scholar]
  62. Lee S.H. Jun B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019 20 4 865 10.3390/ijms20040865 30781560
    [Google Scholar]
  63. Ibrahim N.H. Taha G.M. Hagaggi N.S.A. Moghazy M.A. Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC Chem. 2024 18 1 7 10.1186/s13065‑023‑01105‑y 38184656
    [Google Scholar]
  64. Flavonoids S. Nature Playing with the Hydrophilic-Hydrophobic Balance 2008
  65. Manach C. Donovan J.L. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic. Res. 2004 38 8 771 785 10.1080/10715760410001727858 15493450
    [Google Scholar]
  66. Brede C. Labhasetwar V. Applications of nanoparticles in the detection and treatment of kidney diseases. Adv. Chronic Kidney Dis. 2013 20 6 454 465 10.1053/j.ackd.2013.07.006 24206598
    [Google Scholar]
  67. Ma Y. Cai F. Li Y. Chen J. Han F. Lin W. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioact. Mater. 2020 5 3 732 743 10.1016/j.bioactmat.2020.05.002 32596555
    [Google Scholar]
  68. Trac N. Ashraf A. Giblin J. Prakash S. Mitragotri S. Chung E.J. Spotlight on Genetic Kidney Diseases: A Call for Drug Delivery and Nanomedicine Solutions. ACS Nano 2023 17 7 6165 6177 10.1021/acsnano.2c12140 36988207
    [Google Scholar]
  69. Yang K. Shang Y. Yang N. Pan S. Jin J. He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front. Med. (Lausanne) 2023 10 1132355 10.3389/fmed.2023.1132355 37138743
    [Google Scholar]
  70. Workman P. Aboagye E.O. Balkwill F. Balmain A. Bruder G. Chaplin D.J. Double J.A. Everitt J. Farningham D A H. Glennie M.J. Kelland L.R. Robinson V. Stratford I.J. Tozer G.M. Watson S. Wedge S.R. Eccles S.A. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 2010 102 11 1555 1577 10.1038/sj.bjc.6605642 20502460
    [Google Scholar]
  71. Martin E.C. Aarons L. Yates J.W.T. Accounting for dropout in xenografted tumour efficacy studies: integrated endpoint analysis, reduced bias and better use of animals. Cancer Chemother. Pharmacol. 2016 78 1 131 141 10.1007/s00280‑016‑3059‑x 27220867
    [Google Scholar]
  72. Chen H. Ye Q. Lv J. Ye P. Sun Y. Fan S. Su X. Gavine P. Yin X. Evaluation of Trastuzumab Anti-Tumor Efficacy and its Correlation with HER-2 Status in Patient-Derived Gastric Adenocarcinoma Xenograft Models. Pathol. Oncol. Res. 2015 21 4 947 955 10.1007/s12253‑015‑9909‑8 25749810
    [Google Scholar]
  73. Tsukihara H. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts. Oncol. Rep. 2015 33 5 2135 2142 10.3892/or.2015.3876
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X345534241121082505
Loading
/content/journals/ccand/10.2174/012212697X345534241121082505
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: NOD-SCID ; XRD ; therapeutics ; MCF-7 ; TEM-EDX ; Cost-effective
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test