Abstract
Background
The Wnt/beta-catenin pathway is one of the pathways that is deregulated in pancreatic cancer and is reported to be associated with a poor prognosis. This indicates the need for the identification of novel agents to improve the efficacy of current therapy or have an improved efficacy. Therefore, in the present study, we explored the anticancer activity of PNU-74654 alone or in combination with gemcitabine in 2 and 3-dimensional cell culture models of pancreatic cancer.
Methods
The MTT assay was carried out to determine the viability of PC cancerous cells (PCCs), while the cytotoxicity of this agent was evaluated in a 3D cell culture model (spheroid). The effects of PNU-74654 were investigated in established cell migration/invasion assays.
Results
The expression of candidate genes affecting the cell cycle, migration, and Wnt/b-catenin pathway was evaluated at mRNA and/or proteins by RT-PCR or Western blot. PNU-74654 inhibited the cell growth at IC50 of 122 ± 0.4 umol/L and had a synergistic effect on the antiproliferative properties of gemcitabine by modulating the Wnt pathway. The PNU-74654/gemcitabine combination reduced the migratory and invasiveness of PC cells, compared to control cells, through perturbation of E-cadherin.
Conclusion
Our findings demonstrate the profound antitumor properties of PNU-74654 in in vitro models of pancreatic cancer, supporting further in vivo studies to evaluate the therapeutic impact of this novel therapy to target the Wnt pathway in the treatment of pancreatic cancer.
© 2024 Bentham Science Publishers
Article metrics loading...
/content/journals/ccand/10.2174/012212697X293676240916114229
2024-10-21
2025-03-07
-
/content/journals/ccand/10.2174/012212697X293676240916114229
dcterms_title,dcterms_subject,pub_keyword
-contentType:Contributor -contentType:Concept -contentType:Institution
10
5
Full text loading...
[Citing articles]
[Web of Science]
[Medline]
References
-
Jemal
A.
Siegel
R.
Ward
E.
Murray
T.
Xu
J.
Thun
M.J.
Cancer statistics, 2007.
CA Cancer J. Clin.
2007
57
1
43
66
10.3322/canjclin.57.1.43
17237035
[Google Scholar]
-
Yeo
T.P.
Hruban
R.H.
Leach
S.D.
Wilentz
R.E.
Sohn
T.A.
Kern
S.E.
Iacobuzio-Donahue
C.A.
Maitra
A.
Goggins
M.
Canto
M.I.
Abrams
R.A.
Laheru
D.
Jaffee
E.M.
Hidalgo
M.
Yeo
C.J.
Pancreatic cancer.
Curr. Probl. Cancer
2002
26
4
176
275
10.1067/mcn.2002.129579
12399802
[Google Scholar]
-
Siegel
R.
Naishadham
D.
Jemal
A.
Cancer statistics, 2013.
CA Cancer J. Clin.
2013
63
1
11
30
10.3322/caac.21166
23335087
[Google Scholar]
-
Feldmann
G.
Maitra
A.
Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts.
J. Mol. Diagn.
2008
10
2
111
122
10.2353/jmoldx.2008.070115
18258927
[Google Scholar]
-
Jones
S.
Zhang
X.
Parsons
D.W.
Lin
J.C.H.
Leary
R.J.
Angenendt
P.
Mankoo
P.
Carter
H.
Kamiyama
H.
Jimeno
A.
Hong
S.M.
Fu
B.
Lin
M.T.
Calhoun
E.S.
Kamiyama
M.
Walter
K.
Nikolskaya
T.
Nikolsky
Y.
Hartigan
J.
Smith
D.R.
Hidalgo
M.
Leach
S.D.
Klein
A.P.
Jaffee
E.M.
Goggins
M.
Maitra
A.
Iacobuzio-Donahue
C.
Eshleman
J.R.
Kern
S.E.
Hruban
R.H.
Karchin
R.
Papadopoulos
N.
Parmigiani
G.
Vogelstein
B.
Velculescu
V.E.
Kinzler
K.W.
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.
Science
2008
321
5897
1801
1806
10.1126/science.1164368
18772397
[Google Scholar]
-
Morris
J.P.
IV
Wang
S.C.
Hebrok
M.
KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma.
Nat. Rev. Cancer
2010
10
10
683
695
10.1038/nrc2899
20814421
[Google Scholar]
-
Zhang
Y.
Morris
J.P.
IV
Yan
W.
Schofield
H.K.
Gurney
A.
Simeone
D.M.
Millar
S.E.
Hoey
T.
Hebrok
M.
Pasca di Magliano
M.
Canonical wnt signaling is required for pancreatic carcinogenesis.
Cancer Res.
2013
73
15
4909
4922
10.1158/0008‑5472.CAN‑12‑4384
23761328
[Google Scholar]
-
Miyamoto
Y.
Maitra
A.
Ghosh
B.
Zechner
U.
Argani
P.
Iacobuzio-Donahue
C.A.
Sriuranpong
V.
Iso
T.
Meszoely
I.M.
Wolfe
M.S.
Hruban
R.H.
Ball
D.W.
Schmid
R.M.
Leach
S.D.
Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis.
Cancer Cell
2003
3
6
565
576
10.1016/S1535‑6108(03)00140‑5
12842085
[Google Scholar]
-
Berman
D.M.
Karhadkar
S.S.
Maitra
A.
Montes de Oca
R.
Gerstenblith
M.R.
Briggs
K.
Parker
A.R.
Shimada
Y.
Eshleman
J.R.
Watkins
D.N.
Beachy
P.A.
Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours.
Nature
2003
425
6960
846
851
10.1038/nature01972
14520411
[Google Scholar]
-
Thayer
S.P.
di Magliano
M.P.
Heiser
P.W.
Nielsen
C.M.
Roberts
D.J.
Lauwers
G.Y.
Qi
Y.P.
Gysin
S.
Castillo
C.F.
Yajnik
V.
Antoniu
B.
McMahon
M.
Warshaw
A.L.
Hebrok
M.
Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.
Nature
2003
425
6960
851
856
10.1038/nature02009
14520413
[Google Scholar]
-
Pasca di Magliano
M.
Biankin
A.V.
Heiser
P.W.
Cano
D.A.
Gutierrez
P.J.A.
Deramaudt
T.
Segara
D.
Dawson
A.C.
Kench
J.G.
Henshall
S.M.
Sutherland
R.L.
Dlugosz
A.
Rustgi
A.K.
Hebrok
M.
Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.
PLoS One
2007
2
11
e1155
10.1371/journal.pone.0001155
17982507
[Google Scholar]
-
[Google Scholar]
-
Schwitalla
S.
Fingerle
A.A.
Cammareri
P.
Nebelsiek
T.
Göktuna
S.I.
Ziegler
P.K.
Canli
O.
Heijmans
J.
Huels
D.J.
Moreaux
G.
Rupec
R.A.
Gerhard
M.
Schmid
R.
Barker
N.
Clevers
H.
Lang
R.
Neumann
J.
Kirchner
T.
Taketo
M.M.
van den Brink
G.R.
Sansom
O.J.
Arkan
M.C.
Greten
F.R.
Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties.
Cell
2013
152
1-2
25
38
10.1016/j.cell.2012.12.012
23273993
[Google Scholar]
-
[Google Scholar]
-
Maftouh
M.
Belo
A.I.
Avan
A.
Funel
N.
Peters
G.J.
Giovannetti
E.
van Die
I.
Galectin-4 expression is associated with reduced lymph node metastasis and modulation of Wnt/β-catenin signalling in pancreatic adenocarcinoma.
Oncotarget
2014
5
14
5335
5349
10.18632/oncotarget.2104
24977327
[Google Scholar]
-
MacDonald
B.T.
Tamai
K.
He
X.
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev. Cell
2009
17
1
9
26
10.1016/j.devcel.2009.06.016
19619488
[Google Scholar]
-
[Google Scholar]
-
Wu
D.
Pan
W.
GSK3: A multifaceted kinase in Wnt signaling.
Trends Biochem. Sci.
2010
35
3
161
168
10.1016/j.tibs.2009.10.002
19884009
[Google Scholar]
-
Jacobs
K.M.
Bhave
S.R.
Ferraro
D.J.
Jaboin
J.J.
Hallahan
D.E.
Thotala
D.
GSK-3: A bifunctional role in cell death pathways.
Int. J. Cell Biol.
2012
2012
1
11
10.1155/2012/930710
22675363
[Google Scholar]
-
Gough
N.R.
Focus issue: Wnt and β-catenin signaling in development and disease.
Sci. Signal.
2012
5
206
eg2
10.1126/scisignal.2002806
22234609
[Google Scholar]
-
Gordon
M.D.
Nusse
R.
Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors.
J. Biol. Chem.
2006
281
32
22429
22433
10.1074/jbc.R600015200
16793760
[Google Scholar]
-
Satelli
A.
Rao
P.S.
Thirumala
S.
Rao
U.S.
Galectin‐4 functions as a tumor suppressor of human colorectal cancer.
Int. J. Cancer
2011
129
4
799
809
10.1002/ijc.25750
21064109
[Google Scholar]
-
Leal
L.F.
Bueno
A.C.
Gomes
D.C.
Abduch
R.
de Castro
M.
Antonini
S.R.
Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis.
Oncotarget
2015
6
40
43016
43032
10.18632/oncotarget.5513
26515592
[Google Scholar]
-
Trosset
J.Y.
Dalvit
C.
Knapp
S.
Fasolini
M.
Veronesi
M.
Mantegani
S.
Gianellini
L.M.
Catana
C.
Sundström
M.
Stouten
P.F.W.
Moll
J.K.
Inhibition of protein–protein interactions: The discovery of druglike β‐catenin inhibitors by combining virtual and biophysical screening.
Proteins
2006
64
1
60
67
10.1002/prot.20955
16568448
[Google Scholar]
-
Rovithi
M.
Avan
A.
Funel
N.
Leon
L.G.
Gomez
V.E.
Wurdinger
T.
Griffioen
A.W.
Verheul
H.M.W.
Giovannetti
E.
Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: A platform for drug testing.
Sci. Rep.
2017
7
1
44686
10.1038/srep44686
28304379
[Google Scholar]
-
Avan
A.
Quint
K.
Nicolini
F.
Funel
N.
Frampton
A.E.
Maftouh
M.
Pelliccioni
S.
Schuurhuis
G.J.
Peters
G.J.
Giovannetti
E.
Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer.
Curr. Pharm. Des.
2013
19
5
940
950
10.2174/138161213804547312
22973962
[Google Scholar]
-
Maftouh
M.
Avan
A.
Sciarrillo
R.
Granchi
C.
Leon
L.G.
Rani
R.
Funel
N.
Smid
K.
Honeywell
R.
Boggi
U.
Minutolo
F.
Peters
G.J.
Giovannetti
E.
Synergistic interaction of novel lactate dehydrogenase inhibitors with gemcitabine against pancreatic cancer cells in hypoxia.
Br. J. Cancer
2014
110
1
172
182
10.1038/bjc.2013.681
24178759
[Google Scholar]
-
Nedaeinia
R.
Sharifi
M.
Avan
A.
Kazemi
M.
Rafiee
L.
Ghayour-Mobarhan
M.
Salehi
R.
Locked nucleic acid anti-miR-21 inhibits cell growth and invasive behaviors of a colorectal adenocarcinoma cell line: LNA-anti-miR as a novel approach.
Cancer Gene Ther.
2016
23
8
246
253
10.1038/cgt.2016.25
27364574
[Google Scholar]
-
Mollazadeh
S.
Mehrabadi
S.
Hassanian
S.M.
Ghayour-Mobarhan
M.
Ferns
G.A.
Khazaei
M.
Avan
A.
Photodynamic therapy as a desirable approach in the treatment of colorectal cancer, with special focus on photodynamic nanotherapeutics in immunotherapy.
Curr. Med. Chem.
2024
31
10.2174/0109298673267788231208073338
38275066
[Google Scholar]
-
Maftouh
M.
Avan
A.
Funel
N.
Frampton
A.E.
Fiuji
H.
Pelliccioni
S.
Castellano
L.
Galla
V.
Peters
G.J.
Giovannetti
E.
miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells.
Nucleosides Nucleotides Nucleic Acids
2014
33
4-6
384
393
10.1080/15257770.2014.891741
24940696
[Google Scholar]
-
Anto
R.J.
Mukhopadhyay
A.
Denning
K.
Aggarwal
B.B.
Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl.
Carcinogenesis
2002
23
1
143
150
10.1093/carcin/23.1.143
11756235
[Google Scholar]
-
Avan
A.
Caretti
V.
Funel
N.
Galvani
E.
Maftouh
M.
Honeywell
R.J.
Lagerweij
T.
Van Tellingen
O.
Campani
D.
Fuchs
D.
Verheul
H.M.
Schuurhuis
G.J.
Boggi
U.
Peters
G.J.
Würdinger
T.
Giovannetti
E.
Crizotinib inhibits metabolic inactivation of gemcitabine in c-Met-driven pancreatic carcinoma.
Cancer Res.
2013
73
22
6745
6756
10.1158/0008‑5472.CAN‑13‑0837
24085787
[Google Scholar]
-
Avan
A.
Crea
F.
Paolicchi
E.
Funel
N.
Galvani
E.
Marquez
V.E.
Honeywell
R.J.
Danesi
R.
Peters
G.J.
Giovannetti
E.
Molecular mechanisms involved in the synergistic interaction of the EZH2 inhibitor 3-deazaneplanocin A with gemcitabine in pancreatic cancer cells.
Mol. Cancer Ther.
2012
11
8
1735
1746
10.1158/1535‑7163.MCT‑12‑0037
22622284
[Google Scholar]
-
Avan
A.
Avan
A.
Le Large
T.Y.S.
Mambrini
A.
Funel
N.
Maftouh
M.
Ghayour-Mobarhan
M.
Cantore
M.
Boggi
U.
Peters
G.J.
Pacetti
P.
Giovannetti
E.
AKT1 and SELP polymorphisms predict the risk of developing cachexia in pancreatic cancer patients.
PLoS One
2014
9
9
e108057
10.1371/journal.pone.0108057
25238546
[Google Scholar]
-
Voronkov
A.
Krauss
S.
Wnt/beta-catenin signaling and small molecule inhibitors.
Curr. Pharm. Des.
2013
19
4
634
664
10.2174/138161213804581837
23016862
[Google Scholar]
-
Hu
C.J.
Wang
L.Y.
Chodosh
L.A.
Keith
B.
Simon
M.C.
Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation.
Mol. Cell. Biol.
2003
23
24
9361
9374
10.1128/MCB.23.24.9361‑9374.2003
14645546
[Google Scholar]
-
Kolligs
F.T.
Bommer
G.
Göke
B.
Wnt/beta-catenin/tcf signaling: A critical pathway in gastrointestinal tumorigenesis.
Digestion
2002
66
3
131
144
10.1159/000066755
12481159
[Google Scholar]
-
Rashid
M.
Zadeh
L.R.
Baradaran
B.
Molavi
O.
Ghesmati
Z.
Sabzichi
M.
Ramezani
F.
Up-down regulation of HIF-1α in cancer progression.
Gene
2021
798
145796
10.1016/j.gene.2021.145796
34175393
[Google Scholar]
-
Chien
T.L.
Wu
Y.C.
Lee
H.L.
Sung
W.W.
Yu
C.Y.
Chang
Y.C.
Lin
C.C.
Wang
C.C.
Tsai
M.C.
PNU-74654 induces cell cycle arrest and inhibits EMT progression in pancreatic.
Medicina
2023
59
9
1531
10.3390/medicina59091531
37763649
[Google Scholar]
-
Yao
H.
Ashihara
E.
Maekawa
T.
Targeting the Wnt/β-catenin signaling pathway in human cancers.
Expert Opin. Ther. Targets
2011
15
7
873
887
10.1517/14728222.2011.577418
21486121
[Google Scholar]
-
[Google Scholar]
-
Dihlmann
S.
von Knebel Doeberitz
M.
Wnt/?-catenin-pathway as a molecular target for future anti-cancer therapeutics.
Int. J. Cancer
2005
113
4
515
524
10.1002/ijc.20609
15472907
[Google Scholar]
-
Moon
R.T.
Kohn
A.D.
Ferrari
G.V.D.
Kaykas
A.
WNT and β-catenin signalling: Diseases and therapies.
Nat. Rev. Genet.
2004
5
9
691
701
10.1038/nrg1427
15372092
[Google Scholar]
-
Nazari
S.E.
Khalili-Tanha
N.
Mehrabadi
S.
Mobasheri
L.
Naimi
H.
khojasteh-Leylakoohi
F.
Dashtiahangar
M.
Fiuji
H.
Shahri
H.M.M.
Sayyed Hoseinian
S.H.
Hassanian
S.M.
Ghorbani
H.R.
Aliakbarian
M.
Ferns
G.A.
Khazaei
M.
Avan
A.
The effects of
Trigonella Foenum-graecum L. on post-surgical adhesion band formation.
Lett. Drug Des. Discov.
2024
21
8
1400
1405
10.2174/1570180820666230417100810
[Google Scholar]
-
Zeng
G.
Germinaro
M.
Micsenyi
A.
Monga
N.K.
Bell
A.
Sood
A.
Malhotra
V.
Sood
N.
Midda
V.
Monga
D.K.
Kokkinakis
D.M.
Monga
S.P.S.
Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma.
Neoplasia
2006
8
4
279
289
10.1593/neo.05607
16756720
[Google Scholar]
-
Biliran
H.
Jr
Wang
Y.
Banerjee
S.
Xu
H.
Heng
H.
Thakur
A.
Bollig
A.
Sarkar
F.H.
Liao
J.D.
Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line.
Clin. Cancer Res.
2005
11
16
6075
6086
10.1158/1078‑0432.CCR‑04‑2419
16115953
[Google Scholar]
-
Yu
Q.
Geng
Y.
Sicinski
P.
Specific protection against breast cancers by cyclin D1 ablation.
Nature
2001
411
6841
1017
1021
10.1038/35082500
11429595
[Google Scholar]
-
Hall
M.
Peters
G.
Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer.
Adv. Cancer Res.
1996
68
67
108
10.1016/S0065‑230X(08)60352‑8
8712071
[Google Scholar]
-
Yamamoto
M.
Tamakawa
S.
Yoshie
M.
Yaginuma
Y.
Ogawa
K.
Neoplastic hepatocyte growth associated with cyclin D1 redistribution from the cytoplasm to the nucleus in mouse hepatocarcinogenesis.
Mol. Carcinog.
2006
45
12
901
913
10.1002/mc.20204
17013836
[Google Scholar]
-
Kornmann
M.
Ishiwata
T.
Itakura
J.
Tangvoranuntakul
P.
Beger
H.G.
Korc
M.
Increased cyclin D1 in human pancreatic cancer is associated with decreased postoperative survival.
Oncology
1998
55
4
363
369
10.1159/000011879
9663429
[Google Scholar]
-
Bachmann
K.
Neumann
A.
Hinsch
A.
Nentwich
M.F.
El Gammal
A.T.
Vashist
Y.
Perez
D.
Bockhorn
M.
Izbicki
J.R.
Mann
O.
Cyclin D1 is a strong prognostic factor for survival in pancreatic cancer: Analysis of CD G870A polymorphism, FISH and immunohistochemistry.
J. Surg. Oncol.
2015
111
3
316
323
10.1002/jso.23826
25470788
[Google Scholar]
-
Chung
D.C.
Brown
S.B.
Graeme-Cook
F.
Seto
M.
Warshaw
A.L.
Jensen
R.T.
Arnold
A.
Overexpression of cyclin D1 occurs frequently in human pancreatic endocrine tumors.
J. Clin. Endocrinol. Metab.
2000
85
11
4373
4378
10.1210/jc.85.11.4373
11095482
[Google Scholar]
/content/journals/ccand/10.2174/012212697X293676240916114229