Skip to content
2000
image of Synergistic Action of Thymol-citral is Associated with Cell Cycle Arrest and Intracellular ROS Generation in A549 Cells

Abstract

Objective

NSCLC is the predominant form of lung cancer, often exhibiting resistance to chemotherapy. Thymol and citral have shown promise as anticancer agents in different cancer cell lines but have not been evaluated in combination against NSCLC. Hence, we planned to investigate the anticancer effect of thymol-citral combination and explore its mechanisms of action against A549 cells.

Methods

A549 cells were exposed to varying concentrations of thymol and citral, alone and in combination. Cell proliferation, plasma membrane integrity, apoptotic markers, reactive oxygen species (ROS) levels, cell cycle distribution, senescence induction, and migration potential were assessed. Additionally, safety was evaluated in human bronchial epithelial cells (HBECs) and human red blood cells (RBCs).

Results

Thymol and citral showed synergistic action against A549 cells, with a CI value of 0.75. After 24 h, they induced apoptosis, caused G0/G1 phase arrest, and increased ROS levels, suggesting oxidative stress as the mechanism. This combination also induced cell senescence, significantly inhibited A549 cell migration, and was non-toxic to human RBCs and HBECs.

Conclusion

Overall, the thymol-citral synergistic combination was found to be a safe and effective therapy option for non-small cell lung cancer.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X326412241017124450
2024-10-24
2024-11-22
Loading full text...

Full text loading...

References

  1. Yu Y.W. Wang C.P. Han Y.F. Niu J.J. Zhang Y.Z. Fang Y. Meta-analysis on related risk factors regarding lung cancer in non-smoking Chinese women. Zhonghua Liu Xing Bing Xue Za Zhi 2016 37 2 268 272 10.3760/cma.j.issn.0254‑6450.2016.02.024 26917529
    [Google Scholar]
  2. Barta J.A. Powell C.A. Wisnivesky J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019 85 1 8 10.5334/aogh.2419 30741509
    [Google Scholar]
  3. Molina J.R. Yang P. Cassivi S.D. Schild S.E. Adjei A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008 83 5 584 94 10.4065/83.5.584
    [Google Scholar]
  4. Azar F.E. Azami-Aghdash S. Pournaghi-Azar F. Mazdaki A. Rezapour A. Ebrahimi P. Yousefzadeh N. Cost-effectiveness of lung cancer screening and treatment methods: a systematic review of systematic reviews. BMC Health Serv. Res. 2017 17 1 413 10.1186/s12913‑017‑2374‑1 28629461
    [Google Scholar]
  5. Wang X. Zhang H. Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019 2 2 141 160 10.20517/cdr.2019.10 34322663
    [Google Scholar]
  6. Luqmani Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005 14 Suppl. 1 35 48 10.1159/000086183 16103712
    [Google Scholar]
  7. Bhanot A. Sharma R. Noolvi M.N. Natural sources as potential anti-cancer agents: A review. Int. J. Phytomedicine. 2011 3 9 26
    [Google Scholar]
  8. Cragg G.M. Newman D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005 100 1-2 72 79 10.1016/j.jep.2005.05.011 16009521
    [Google Scholar]
  9. Cragg G.M. Grothaus P.G. Newman D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 2009 109 7 3012 3043 10.1021/cr900019j 19422222
    [Google Scholar]
  10. Nagao S. Kogiku A. Suzuki K. Shibutani T. Yamamoto K. Jimi T. Kitai M. Shiozaki T. Matsuoka K. Yamaguchi S. A phase II study of the combination chemotherapy of bevacizumab and gemcitabine in women with platinum-resistant recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Ovarian Res. 2020 13 1 14 10.1186/s13048‑020‑0617‑y 32028974
    [Google Scholar]
  11. Colomer R. Review of gemcitabine plus taxane combination therapy in the first-line treatment of metastatic breast cancer. Eur. J. Cancer, Suppl. 2008 6 8 9 12 10.1016/S1359‑6349(08)70284‑2
    [Google Scholar]
  12. Rigas J.R. Taxane-platinum combinations in advanced non-small cell lung cancer: a review. Oncologist 2004 9 S2 Suppl. 2 16 23 10.1634/theoncologist.9‑suppl_2‑16 15161987
    [Google Scholar]
  13. Pereira J.R. Fein L. del Giglio A. Blajman C.R. Richardet E. Schwartsmann G. Orlando M. Hall B.J. West T.M. van Kooten M. Gemcitabine administered as a short infusion versus a fixed dose rate in combination with cisplatin for the treatment of patients with advanced non-small cell lung cancer. Lung Cancer 2007 58 1 80 87 10.1016/j.lungcan.2007.05.004 17588704
    [Google Scholar]
  14. Chou T.C. The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy 2018 7 49 50 10.1016/j.synres.2018.04.001
    [Google Scholar]
  15. Mokhtari R.B. Homayouni T.S. Baluch N. Morgatskaya E. Kumar S. Das B. Yeger H. Combination therapy in combating cancer. Oncotarget 2017 8 23 38022 38043 10.18632/oncotarget.16723 28410237
    [Google Scholar]
  16. Ozben T. Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett. 2006 580 12 2903 2909 10.1016/j.febslet.2006.02.020 16497299
    [Google Scholar]
  17. Nagoor Meeran M.F. Javed H. Al Taee H. Azimullah S. Ojha S.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol. 2017 8 380 10.3389/fphar.2017.00380 28694777
    [Google Scholar]
  18. De La Chapa J.J. Singha P.K. Lee D.R. Gonzales C.B. Thymol inhibits oral squamous cell carcinoma growth via mitochondria‐mediated apoptosis. J. Oral Pathol. Med. 2018 47 7 674 682 10.1111/jop.12735 29777637
    [Google Scholar]
  19. Satooka H. Kubo I. Effects of thymol on B16-F10 melanoma cells. J. Agric. Food Chem. 2012 60 10 2746 2752 10.1021/jf204525b 22352891
    [Google Scholar]
  20. Kruk I. Michalska T. Lichszteld K. Kładna A. Aboul-Enein H.Y. The effect of thymol and its derivatives on reactions generating reactive oxygen species. Chemosphere 2000 41 7 1059 1064 10.1016/S0045‑6535(99)00454‑3 10879823
    [Google Scholar]
  21. Sharma S. Habib S. Sahu D. Gupta J. Chemical Properties and Therapeutic Potential of Citral, a Monoterpene Isolated from Lemongrass. Med. Chem. 2021 17 1 2 12 10.2174/18756638MTAzbMjYa2 31880247
    [Google Scholar]
  22. Ghosh K. Anticancer effect of lemongrass oil and citral on cervical cancer cell lines. Pharmacogn. Commun. 2013 3 10.5530/pc.2013.4.6
    [Google Scholar]
  23. Chaouki W. Leger D.Y. Liagre B. Beneytout J.L. Hmamouchi M. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF‐7 cells. Fundam. Clin. Pharmacol. 2009 23 5 549 556 10.1111/j.1472‑8206.2009.00738.x 19656204
    [Google Scholar]
  24. Chou T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010 70 2 440 446 10.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  25. Yu D. Kahen E. Cubitt C.L. McGuire J. Kreahling J. Lee J. Altiok S. Lynch C.C. Sullivan D.M. Reed D.R. Identification of Synergistic, Clinically Achievable, Combination Therapies for Osteosarcoma. Sci. Rep. 2015 5 1 16991 10.1038/srep16991 26601688
    [Google Scholar]
  26. Kiruthiga C. Jaya Balan D. Jafni S. Anandan D.P. Devi K.P. Phytol and (−)-α-bisabolol Synergistically trigger intrinsic apoptosis through redox and Ca2+ imbalance in non-small cell lung cancer. Biocatal. Agric. Biotechnol. 2024 56 103005 10.1016/j.bcab.2023.103005
    [Google Scholar]
  27. Balan D.J. Rajavel T. Das M. Sathya S. Jeyakumar M. Devi K.P. Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells. Pharmacol. Rep. 2021 73 1 240 254 10.1007/s43440‑020‑00171‑6 33095436
    [Google Scholar]
  28. Houghton P. Fang R. Techatanawat I. Steventon G. Hylands P.J. Lee C.C. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods 2007 42 4 377 387 10.1016/j.ymeth.2007.01.003 17560325
    [Google Scholar]
  29. Häcker G. The morphology of apoptosis. Cell Tissue Res. 2000 301 1 5 17 10.1007/s004410000193 10928277
    [Google Scholar]
  30. Huh S. Ker D.F.E. Su H. Kanade T. Apoptosis detection for adherent cell populations in time-lapse phase-contrast microscopy images. Med Image Comput Comput Assist Interv. 2012 15 Pt 1 331 339 10.1007/978‑3‑642‑33415‑3_41
    [Google Scholar]
  31. Kumar P. Nagarajan A. Uchil P.D. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harb Protoc 2018 2018 6
    [Google Scholar]
  32. Kim H. Xue X. Detection of Total Reactive Oxygen Species in Adherent Cells by 2′,7′-Dichlorodihydrofluorescein Diacetate Staining. J. Vis. Exp. 2020 2020 160 10.3791/60682‑v 32658187
    [Google Scholar]
  33. Nunez R. DNA measurement and cell cycle analysis by flow cytometry. Curr. Issues Mol. Biol. 2001 3 3 67 70 10.21775/cimb.003.067 11488413
    [Google Scholar]
  34. Itahana K. Campisi J. Dimri G.P. Methods to detect biomarkers of cellular senescence: the senescence-associated β-galactosidase assay. Methods Mol. Biol. 2007 371 21 31 10.1007/978‑1‑59745‑361‑5_3 17634571
    [Google Scholar]
  35. Cappiello F. Casciaro B. Mangoni M.L. A novel in vitro wound healing assay to evaluate cell migration. J. Vis. Exp. 2018 2018 133 56825 10.3791/56825 29608162
    [Google Scholar]
  36. Rowe G.E. Welch R.A. Assays of hemolytic toxins. Methods Enzymol. 1994 235 657 67 10.1016/0076‑6879(94)35179‑1
    [Google Scholar]
  37. do Vale L.D.O. da Silva V.H.P. de Almeida F.R. Ribeiro D.A. da Silva D.M. Evaluation of genotoxic and cytotoxic effects in buccal mucosa cells of welders in the cities of Cubatão and Santos, state of São Paulo, Brazil. Rev. Bras. Med. Trab. 2017 15 4 303 309 10.5327/Z1679443520170012 32377585
    [Google Scholar]
  38. Klein S. McCormick F. Levitzki A. Killing time for cancer cells. Nat. Rev. Cancer 2005 5 7 573 580 10.1038/nrc1651 15965492
    [Google Scholar]
  39. Pelicano H. Carney D. Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 2004 7 2 97 110 10.1016/j.drup.2004.01.004 15158766
    [Google Scholar]
  40. Gentric G. Mieulet V. Mechta-Grigoriou F. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field. Antioxid. Redox Signal. 2017 26 9 462 485 10.1089/ars.2016.6750 27228792
    [Google Scholar]
  41. Liou G.Y. Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010 44 5 479 496 10.3109/10715761003667554 20370557
    [Google Scholar]
  42. Trachootham D. Alexandre J. Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 2009 8 7 579 591 10.1038/nrd2803 19478820
    [Google Scholar]
  43. Althubiti M. Lezina L. Carrera S. Jukes-Jones R. Giblett S.M. Antonov A. Barlev N. Saldanha G.S. Pritchard C.A. Cain K. Macip S. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 2014 5 11 e1528 e1528 10.1038/cddis.2014.489 25412306
    [Google Scholar]
  44. Eccles M. Li C. Senescence Associated β-galactosidase Staining. Bio Protoc. 2012 2 16 10.21769/BioProtoc.247
    [Google Scholar]
  45. Nussbaumer S. Bonnabry P. Veuthey J.L. Fleury-Souverain S. Analysis of anticancer drugs: A review. Talanta 2011 85 5 2265 2289 10.1016/j.talanta.2011.08.034 21962644
    [Google Scholar]
  46. DeVita V.T. Jr Chu E. A history of cancer chemotherapy. Cancer Res. 2008 68 21 8643 8653 10.1158/0008‑5472.CAN‑07‑6611 18974103
    [Google Scholar]
  47. Huang C.Y. Ju D.T. Chang C.F. Muralidhar Reddy P. Velmurugan B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine (Taipei) 2017 7 4 23 10.1051/bmdcn/2017070423 29130448
    [Google Scholar]
  48. Balusamy S.R. Perumalsamy H. Veerappan K. Huq M.A. Rajeshkumar S. Lakshmi T. Kim Y.J. Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: In silico and in vitro study. BioMed Res. Int. 2020 2020 1 15 10.1155/2020/6040727 32258129
    [Google Scholar]
  49. Kubatka P. Uramova S. Kello M. Kajo K. Samec M. Jasek K. Vybohova D. Liskova A. Mojzis J. Adamkov M. Zubor P. Smejkal K. Svajdlenka E. Solar P. Samuel S.M. Zulli A. Kassayova M. Lasabova Z. Kwon T.K. Pec M. Danko J. Büsselberg D. Anticancer Activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int. J. Mol. Sci. 2019 20 7 1749 10.3390/ijms20071749 30970626
    [Google Scholar]
  50. Gökalp F. The effective natural compounds for inhibiting Cervical cancer. Med. Oncol. 2021 38 2 12 10.1007/s12032‑021‑01456‑3 33474656
    [Google Scholar]
  51. Kyakulaga A.H. Aqil F. Munagala R. Gupta R.C. Synergistic combinations of paclitaxel and withaferin A against human non-small cell lung cancer cells. Oncotarget 2020 11 16 1399 1416 10.18632/oncotarget.27519 32362998
    [Google Scholar]
  52. Kiruthiga C. Jaya D. Nagaiah B. Prasath H. Synergistic induction of apoptosis in lung cancer cells through co-delivery of PLGA phytol/α-bisabolol nanoparticles. Naunyn Schmiedebergs Arch Pharmacol. 2024 397 7 5131 5144 10.1007/s00210‑023‑02935‑2
    [Google Scholar]
  53. Kiruthiga C. Niharika K. Devi K.P. Phytol and α-Bisabolol Synergy Induces Autophagy and Apoptosis in A549 Cells and Additional Molecular Insights through Comprehensive Proteome Analysis via Nano LC-MS/MS. Anticancer. Agents Med. Chem. 2024 24 10 773 788 10.2174/0118715206289038240214102951 38415491
    [Google Scholar]
  54. Zhao C. Gao W. Chen T. Synergistic induction of apoptosis in A549 cells by dihydroartemisinin and gemcitabine. Apoptosis 2014 19 4 668 681 10.1007/s10495‑013‑0953‑0 24337869
    [Google Scholar]
  55. Hu S. Li X. Xu R. Ye L. Kong H. Zeng X. Wang H. Xie W. The synergistic effect of resveratrol in combination with cisplatin on apoptosis via modulating autophagy in A549 cells. Acta Biochim. Biophys. Sin. (Shanghai) 2016 48 6 528 535 10.1093/abbs/gmw026 27084520
    [Google Scholar]
  56. Vajrabhaya L. Korsuwannawong S. Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. J. Anal. Sci. Technol. 2018 9 1 15 10.1186/s40543‑018‑0146‑0
    [Google Scholar]
  57. Rubinstein L.V. Shoemaker R.H. Paull K.D. Simon R.M. Tosini S. Skehan P. Scudiero D.A. Monks A. Boyd M.R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst. 1990 82 13 1113 1117 10.1093/jnci/82.13.1113 2359137
    [Google Scholar]
  58. Skehan P. Storeng R. Scudiero D. Monks A. McMahon J. Vistica D. Warren J.T. Bokesch H. Kenney S. Boyd M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990 82 13 1107 1112 10.1093/jnci/82.13.1107 2359136
    [Google Scholar]
  59. Rajput J.D. Bagul S.D. Tadavi S. Bendre R.S. Comparative Anti-Proliferative Studies of Natural Phenolic Monoterpenoids on Human Malignant Tumour Cells. Med. Aromat. Plants 2016 5 6 10.4172/2167‑0412.1000279
    [Google Scholar]
  60. Saraste A. Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 2000 45 3 528 537 10.1016/S0008‑6363(99)00384‑3 10728374
    [Google Scholar]
  61. Aydın E. Türkez H. In vitro cytotoxicity, genotoxicity and antioxidant potentials of thymol on human blood cells. J. Essent. Oil Res. 2014 26 2 133 140 10.1080/10412905.2013.860411
    [Google Scholar]
  62. Chung Y.M. Bae Y.S. Lee S.Y. Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic. Biol. Med. 2003 34 4 434 442 10.1016/S0891‑5849(02)01301‑1 12566069
    [Google Scholar]
  63. Fulda S. Gorman A.M. Hori O. Samali A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010 2010 1 23 10.1155/2010/214074 20182529
    [Google Scholar]
  64. Kapur A. Felder M. Fass L. Kaur J. Czarnecki A. Rathi K. Zeng S. Osowski K.K. Howell C. Xiong M.P. Whelan R.J. Patankar M.S. Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation. Sci. Rep. 2016 6 1 27530 10.1038/srep27530 27270209
    [Google Scholar]
  65. Li Y. Wen J. Du C. Hu S. Chen J. Zhang S. Zhang N. Gao F. Li S. Mao X. Miyamoto H. Ding K. Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis. Biochem. Biophys. Res. Commun. 2017 491 2 530 536 10.1016/j.bbrc.2017.04.009 28389245
    [Google Scholar]
  66. Bandyopadhyay U. Das D. Banerjee R.K. Reactive oxygen species: Oxidative damage and pathogenesis. Curr. Sci. 1999 ••• 77
    [Google Scholar]
  67. Kuczler M.D. Olseen A.M. Pienta K.J. Amend S.R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol. 2021 165 3 7 10.1016/j.pbiomolbio.2021.05.002 33991583
    [Google Scholar]
  68. Carrasco-Torres G. Baltiérrez-Hoyos R. Andrade-Jorge E. Villa-Treviño S. Trujillo-Ferrara J.G. Vásquez-Garzón V.R. Cytotoxicity, Oxidative Stress, Cell Cycle Arrest, and Mitochondrial Apoptosis after Combined Treatment of Hepatocarcinoma Cells with Maleic Anhydride Derivatives and Quercetin. Oxid. Med. Cell. Longev. 2017 2017 1 2734976 10.1155/2017/2734976 29163752
    [Google Scholar]
  69. Colavitti R. Finkel T. Reactive oxygen species as mediators of cellular senescence. IUBMB Life 2005 57 4-5 277 281 10.1080/15216540500091890 16036611
    [Google Scholar]
  70. Wei W. Ji S. Cellular senescence: Molecular mechanisms and pathogenicity. J. Cell. Physiol. 2018 233 12 9121 9135 10.1002/jcp.26956 30078211
    [Google Scholar]
  71. Ohshima K. Morii E. Metabolic Reprogramming of Cancer Cells during Tumor Progression and Metastasis. Metabolites 2021 11 1 28 10.3390/metabo11010028 33401771
    [Google Scholar]
  72. Gkretsi V. Stylianopoulos T. Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Front. Oncol. 2018 8 145 10.3389/fonc.2018.00145 29780748
    [Google Scholar]
  73. Nordin N. Yeap S.K. Rahman H.S. Zamberi N.R. Abu N. Mohamad N.E. How C.W. Masarudin M.J. Abdullah R. Alitheen N.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci. Rep. 2019 9 1 1614 10.1038/s41598‑018‑38214‑x 30733560
    [Google Scholar]
  74. Lv R. Chen Z. Thymol inhibits cell migration and invasion by downregulating the activation of PI3K/AKT and ERK pathways in human colon cancer cells. Trop. J. Pharm. Res. 2018 16 12 2895 10.4314/tjpr.v16i12.13
    [Google Scholar]
  75. Farag M.R. Alagawany M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem. Biol. Interact. 2018 279 73 83 10.1016/j.cbi.2017.11.007 29128605
    [Google Scholar]
  76. Pagano M. Faggio C. The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem. Funct. 2015 33 6 351 355 10.1002/cbf.3135 26399850
    [Google Scholar]
  77. Boelsterli U.A. Shie K.P. Brändle E. Zbinden G. Toxicological screening models: Drug-induced oxidative hemolysis. Toxicol. Lett. 1983 15 2-3 153 158 10.1016/0378‑4274(83)90209‑6 6829039
    [Google Scholar]
  78. Tadin A. Stazic V. Galic N. Zeljezic D. Evaluation of cytotoxic and genotoxic effects in buccal mucosal cells in non-smokers and users of traditional combustible tobacco products and non-combustible alternatives. J. Xenobiot. 2024 14 1 154 165 10.3390/jox14010009 38249106
    [Google Scholar]
  79. Liu Y. Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res. 1989 49 19 5294 8
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X326412241017124450
Loading
/content/journals/ccand/10.2174/012212697X326412241017124450
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: A549 ; Citral ; NSCLC ; ROS ; Apoptosis ; thymol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test