Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Introduction

Enterococci are natural inhabitants of the human gastrointestinal tract and contain plasmids, which are often used to generate plasmid vectors. RGK7, a strain of isolated from neonatal faeces, natively contains a 1935 bp plasmid pRGK7d.

Objective

This study focused on the molecular characterization of the plasmid pRGK7d and its exploitation for the generation of shuttle cloning vectors.

Methods and Results

The isolate RGK7 was identified as by phenotypic and genotypic methods, including 16S rRNA sequencing. Phylogenetic analysis also confirmed that the strain belongs to the group of . BLAST analysis of the pRGK7d plasmid sequence revealed the highest homology with genes for replication protein. ORF Finder analysis of the 1.9 kb plasmid pRGK7d showed a total of 17 ORFs in multiple overlapping frames, and the biggest ORF sequence showed 97% homology with the Rep protein of In order to make it an shuttle vector, the plasmid was first cloned in pUC18 and then recloned in T vector by incorporating antibiotic selection markers ampicillin resistance ( and erythromycin resistance ( for its selectivity in Gram-negative and Gram-positive . The shuttle vector was reduced in size and made more effective by cloning only the Rep protein instead of the whole plasmid along with the gene.

Conclusion

An shuttle vector was generated utilizing the plasmid pRGK7d, which, on transformation, conferred ampicillin and erythromycin resistance to the and respectively, that was otherwise sensitive. The shuttle vector was found to be stable in both organisms.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501352974241106100118
2024-11-11
2025-01-31
Loading full text...

Full text loading...

References

  1. ImE.J. LeeH.H.Y. KimM. KimM.K. Evaluation of Enterococcal probiotic usage and review of potential health benefits, safety, and risk of antibiotic-resistant strain emergence.Antibiotics (Basel)2023128132710.3390/antibiotics1208132737627747
    [Google Scholar]
  2. KühnI. IversenA. FinnM. GrekoC. BurmanL.G. BlanchA.R. VilanovaX. ManeroA. TaylorH. CaplinJ. DomínguezL. HerreroI.A. MorenoM.A. MöllbyR. Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions.Appl. Environ. Microbiol.20057195383539010.1128/AEM.71.9.5383‑5390.200516151128
    [Google Scholar]
  3. TeuberM. SchwarzF. PerretenV. Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage.Int. J. Food Microbiol.2003882-332532910.1016/S0168‑1605(03)00195‑814597005
    [Google Scholar]
  4. HanchiH. MottaweaW. SebeiK. HammamiR. The Genus Enterococcus: Between probiotic potential and safety concerns – An update.Front. Microbiol.20189179110.3389/fmicb.2018.0179130123208
    [Google Scholar]
  5. GiraffaG. Functionality of enterococci in dairy products.Int. J. Food Microbiol.2003882-321522210.1016/S0168‑1605(03)00183‑114596993
    [Google Scholar]
  6. HolzapfelW. AriniA. AeschbacherM. CoppolecchiaR. PotB. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics.Benef. Microbes20189337538810.3920/BM2017.014829633645
    [Google Scholar]
  7. TachibanaL. TelliG.S. de Carla DiasD. GonçalvesG.S. IshikawaC.M. CavalcanteR.B. NatoriM.M. HamedS.B. Ranzani-PaivaM.J.T. Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia.Aquacult. Rep.20201610027710.1016/j.aqrep.2020.100277
    [Google Scholar]
  8. FranzC. StilesM.E. SchleiferK.H. HolzapfelW.H. Enterococci in foods—a conundrum for food safety.Int. J. Food Microbiol.2003882-310512210.1016/S0168‑1605(03)00174‑014596984
    [Google Scholar]
  9. OgierJ. SerrorP. Safety assessment of dairy microorganisms: The Enterococcus genus.Int. J. Food Microbiol.2008126329130110.1016/j.ijfoodmicro.2007.08.01717889954
    [Google Scholar]
  10. Le JeuneA. TouchetF. ZhaoC. HartkeA. AuffrayY. BenachourA. Construction of a new sensitive molecular tool for the study of gene expression in Enterococcus faecalis. Microb. Physiol.201019315916810.1159/00032166320938209
    [Google Scholar]
  11. FerchichiM. SebeiK. BoukerbA.M. Karray-BouraouiN. ChevalierS. FeuilloleyM.G.J. ConnilN. ZommitiM. Enterococcus spp.: Is It a Bad Choice for a Good Use—A Conundrum to Solve?Microorganisms2021911222210.3390/microorganisms911222234835352
    [Google Scholar]
  12. Furlaneto-MaiaL. RamalhoR. RochaK.R. FurlanetoM.C. Antimicrobial activity of enterocins against Listeria sp. and other food spoilage bacteria.Biotechnol. Lett.202042579780610.1007/s10529‑020‑02810‑731970555
    [Google Scholar]
  13. DobsonA. CotterP.D. RossR.P. HillC. Bacteriocin production: a probiotic trait?Appl. Environ. Microbiol.20127811610.1128/AEM.05576‑1122038602
    [Google Scholar]
  14. GhazisaeediF. MeensJ. HanscheB. MaurischatS. SchwerkP. GoetheR. WielerL.H. FuldeM. TedinK. A virulence factor as a therapeutic: the probiotic Enterococcus faecium SF68 arginine deiminase inhibits innate immune signaling pathways.Gut Microbes2022141210610510.1080/19490976.2022.210610535921516
    [Google Scholar]
  15. WunderlichP.F. BraunL. FumagalliI. D’ApuzzoV. HeimF. KarlyM. LodiR. PolittaG. VonbankF. ZeltnerL. Double-blind report on the efficacy of lactic acid-producing Enterococcus SF68 in the prevention of antibiotic-associated diarrhoea and in the treatment of acute diarrhoea.J. Int. Med. Res.198917433333810.1177/0300060589017004052676650
    [Google Scholar]
  16. ClewellD.B. Plasmids, drug resistance, and gene transfer in the genus Streptococcus. Microbiol. Rev.198145340943610.1128/mr.45.3.409‑436.19816272080
    [Google Scholar]
  17. JensenL.B. Garcia-MiguraL. ValenzuelaA.J.S. LøhrM. HasmanH. AarestrupF.M. A classification system for plasmids from enterococci and other Gram-positive bacteria.J. Microbiol. Methods2010801254310.1016/j.mimet.2009.10.01219879906
    [Google Scholar]
  18. del SolarG. GiraldoR. Ruiz-EchevarríaM.J. EspinosaM. Díaz-OrejasR. Replication and control of circular bacterial plasmids.Microbiol. Mol. Biol. Rev.199862243446410.1128/MMBR.62.2.434‑464.19989618448
    [Google Scholar]
  19. BenachourA. AuffrayY. HartkeA. Construction of plasmid vectors for screening replicons from gram-positive bacteria and their use as shuttle cloning vectors.Curr. Microbiol.200754534234710.1007/s00284‑006‑0358‑117486410
    [Google Scholar]
  20. ChoS. McMillanE.A. BarrettJ.B. HiottL.M. WoodleyT.A. HouseS.L. FryeJ.G. JacksonC.R. Distribution and transfer of plasmid replicon families among multidrug-resistant Enterococcus faecalis and Enterococcus faecium from poultry.Microorganisms2022106124410.3390/microorganisms1006124435744761
    [Google Scholar]
  21. AlpertC.A. Crutz-Le CoqA.M. MalleretC. ZagorecM. Characterization of a theta-type plasmid from Lactobacillus sakei: a potential basis for low-copy-number vectors in lactobacilli.Appl. Environ. Microbiol.20036995574558410.1128/AEM.69.9.5574‑5584.200312957947
    [Google Scholar]
  22. de VosW.M. SimonsG.F.M. Gene cloning and expression systems in lactococci.Genetics and biotechnology of lactic acid bacteria. GassonM.J. VosW.M. Glasgow, UKBackie19945210510.1007/978‑94‑011‑1340‑3_2
    [Google Scholar]
  23. Martínez-BuenoM. ValdiviaE. GálvezA. MaquedaM. pS86, a new theta-replicating plasmid from Enterococcus faecalis. Curr. Microbiol.200041425726110.1007/s00284001013010977892
    [Google Scholar]
  24. TurgeonN. FrenetteM. MoineauS. Characterization of a theta-replicating plasmid from Streptococcus thermophilus. Plasmid2004511243610.1016/j.plasmid.2003.09.00414711526
    [Google Scholar]
  25. PavlovaS.I. KiliçA.O. TopisirovicL. MiladinovN. HatzosC. TaoL. Characterization of a cryptic plasmid from Lactobacillus fermentum KC5b and its use for constructing a stable Lactobacillus cloning vector.Plasmid200247318219210.1016/S0147‑619X(02)00005‑712151233
    [Google Scholar]
  26. Garcia-MiguraL. HasmanH. JensenL.B. Presence of pRI1: a small cryptic mobilizable plasmid isolated from Enterococcus faecium of human and animal origin.Curr. Microbiol.20095829510010.1007/s00284‑008‑9266‑x18830745
    [Google Scholar]
  27. WyckoffH.A. BarnesM. GilliesK.O. SandineW.E. Characterization and sequence analysis of a stable cryptic plasmid from Enterococcus faecium 226 and development of a stable cloning vector.Appl. Environ. Microbiol.19966241481148610.1128/aem.62.4.1481‑1486.19968919818
    [Google Scholar]
  28. LinY. JingZ. JianjunG. GuowenW. Sequence analysis of an endogenous plasmid from Enterococcus faecalis and the construction of shuttle vectors.Science and Technology of Food Industry2021422314114910.13386/j.issn1002‑0306.2021040175
    [Google Scholar]
  29. JhonY.D. LeeS.H. Complete DNA sequence and analysis of a cryptic plasmid isolated from Lactobacillus bifermentans in Kimchi.J. Microbiol. Biotechnol.200313610181020
    [Google Scholar]
  30. YangE.J. ChangH.C. Analysis of pYC2, a cryptic plasmid in Lactobacillus sakei BM5 isolated from kimchi.Biotechnol. Lett.200931112313010.1007/s10529‑008‑9842‑y18800189
    [Google Scholar]
  31. KokJ. van der VossenJ.M. VenemaG. Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol.198448472673110.1128/aem.48.4.726‑731.19846095756
    [Google Scholar]
  32. De VosW. Gene cloning and expression in lactic streptococci.FEMS Microbiol. Lett.198746328129510.1016/0378‑1097(87)90113‑3
    [Google Scholar]
  33. O’SullivanD.J. KlaenhammerT.R. High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening.Gene1993137222723110.1016/0378‑1119(93)90011‑Q8299952
    [Google Scholar]
  34. SimonD. ChopinA. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie198870455956610.1016/0300‑9084(88)90093‑42844302
    [Google Scholar]
  35. SwinfieldT.J. OultramJ.D. ThompsonD.E. BrehmJ.K. MintonN.P. Physical characterisation of the replication region of the Streptococcus faecalis plasmid pAMβ1.Gene1990871799010.1016/S0378‑1119(19)30488‑32110101
    [Google Scholar]
  36. BrantlS. BehnkeD. Characterization of the minimal origin required for replication of the streptococcal plasmid plP501 in Bacillus subtilis.Mol. Microbiol.19926233501351010.1111/j.1365‑2958.1992.tb01785.x1474894
    [Google Scholar]
  37. Trieu-CuotP. CarlierC. MartinP. CourvalinP. Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria.FEMS Microbiol. Lett.1987481-228929410.1111/j.1574‑6968.1987.tb02558.x
    [Google Scholar]
  38. KimO.S. ChoY.J. LeeK. YoonS.H. KimM. NaH. ParkS.C. JeonY.S. LeeJ.H. YiH. WonS. ChunJ. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species.Int. J. Syst. Evol. Microbiol.201262Pt_371672110.1099/ijs.0.038075‑022140171
    [Google Scholar]
  39. SambrookJ. FritschE.F. ManiatisT. Molecular cloning: a laboratory manual1989
    [Google Scholar]
  40. AndersonD.G. McKayL.L. Simple and rapid method for isolating large plasmid DNA from lactic streptococci.Appl. Environ. Microbiol.198346354955210.1128/aem.46.3.549‑552.19836416164
    [Google Scholar]
  41. PapagianniM. AvramidisN. FilioussisG. High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol.BMC Biotechnol.2007711510.1186/1472‑6750‑7‑1517374174
    [Google Scholar]
  42. LelieD. BronS. VenemaG. OskamL. Similarity of minus origins of replication and flanking open reading frames of plasmids pUB110, pTB913 and pMV158.Nucleic Acids Res.198917187283729410.1093/nar/17.18.72832677995
    [Google Scholar]
  43. DornanS. CollinsM.A. High efficiency electroporation of Lactococcus lactis subsp. lactis LM0230 with plasmid pGB301.Lett. Appl. Microbiol.1990112626410.1111/j.1472‑765X.1990.tb01275.x1367468
    [Google Scholar]
  44. McIntyreD.A. HarlanderS.K. Genetic transformation of intact Lactococcus lactis subsp. lactis by high-voltage electroporation.Appl. Environ. Microbiol.198955360461010.1128/aem.55.3.604‑610.19892494937
    [Google Scholar]
  45. McIntyreD.A. HarlanderS.K. Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media.Appl. Environ. Microbiol.198955102621262610.1128/aem.55.10.2621‑2626.19892513778
    [Google Scholar]
  46. Pérez-ArellanoI. ZúñigaM. Pérez-MartínezG. Construction of compatible wide-host-range shuttle vectors for lactic acid bacteria and Escherichia coli. Plasmid200146210611610.1006/plas.2001.153111591136
    [Google Scholar]
  47. MacrinaF.L. TobianJ.A. JonesK.R. EvansR.P. ClewellD.B. A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene198219334535310.1016/0378‑1119(82)90025‑76295886
    [Google Scholar]
  48. WirthR. AnF.Y. ClewellD.B. Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli-S. faecalis shuttle vector.J. Bacteriol.1986165383183610.1128/jb.165.3.831‑836.19863005240
    [Google Scholar]
  49. de la CruzF. DaviesJ. Horizontal gene transfer and the origin of species: lessons from bacteria.Trends Microbiol.20008312813310.1016/S0966‑842X(00)01703‑010707066
    [Google Scholar]
  50. LinC.F. ChungT.C. Cloning of erythromycin-resistance determinants and replication origins from indigenous plasmids of Lactobacillus reuteri for potential use in construction of cloning vectors.Plasmid1999421314110.1006/plas.1999.140210413663
    [Google Scholar]
  51. KleinJ.R. UlrichC. PlappR. Characterization and sequence analysis of a small cryptic plasmid from Lactobacillus curvatus LTH683 and its use for construction of new Lactobacillus cloning vectors.Plasmid1993301142910.1006/plas.1993.10308378443
    [Google Scholar]
  52. YamamotoN. TakanoT. Isolation and characterization of a plasmid from Lactobacillus helveticus CP53.Biosci. Biotechnol. Biochem.199660122069207010.1271/bbb.60.20698988641
    [Google Scholar]
  53. KimM.J. KimT.J. KangY.J. YooJ.Y. KimJ.H. Construction of a novel shuttle vector from Tetragenococcus species based on a cryptic plasmid from Tetragenococcus halophilus. J. Microbiol. Biotechnol.202333221121810.4014/jmb.2209.0902436575862
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501352974241106100118
Loading
/content/journals/cbiot/10.2174/0122115501352974241106100118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test