Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Introduction

The waste-to-wealth concept was applied in this study. Our main objective was to identify and evaluate several microorganisms responsible for the production of important industrial enzymes using sludge from palm oil processing. We were able to isolate several bacteria that are tyrosinase producers: . Laccase producers and , as well as lipase producers.

Methods

In addition, we focused specifically on because we knew that it produces tyrosinase. Lipase is another target enzyme, and was found to be a hyperproducer. Production conditions included a 24-hour incubation period at 40°C and a pH of 6.0, while typical substrates such as starch and coconut oil were used.

Results

Preliminary protein purification studies identified a 43 kDa lipase that is active at pH 7.0 and 40°C. Salts such as NaCl, various detergents such as Triton X-100 and Tween-80 as well as many metal ions enhanced the activity and made the enzyme unique in its biological function.

Conclusion

Even with EDTA (2.5 mM), which does not completely block its function, only 40% inhibition was observed. Only a few organic solvents such as butanol, acetone and DMF are involved in inhibiting its activity.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501337787240930180432
2024-10-08
2025-01-19
Loading full text...

Full text loading...

References

  1. KumarK.S. DhanaraniT.S. ThamaraiselviK. Utilization of petroleum hydrocarbons by Micrococcus and Streptococcus spp. isolated from contaminated site.J. Microbiol. Biotechnol. Res.2013317178
    [Google Scholar]
  2. OkogbeninO.B. EmogheneA.O. OkogbeninE.A. AiredeC.E. Antifungal effect of polar and non-polar extracts of Aframomum sceptrum on two isolates of oil palm.J. Appl. Sci. Environ. Manag.201418217318310.4314/jasem.v18i2.4
    [Google Scholar]
  3. NwucheC.O. OgbonnaJ.C. Isolation of lipase producing fungi from palm oil Mill effluent (POME) dump sites at Nsukka.Brazilian Arc of Biol and Tech.2011541113116
    [Google Scholar]
  4. TosuP. LuepromchaiE. SuttinunO. Activation and immobilization of phenol-degrading bacteria on oil palm residues for enhancing phenols degradation in treated palm oil mill effluent.Environ. Eng. Res.201520214114810.4491/eer.2014.039
    [Google Scholar]
  5. JeremiahN. NevenB. GentiliM. CallebautI. MaschalidiS. StolzenbergM. C. Rieux-LaucatF. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestationsThe Journal of clin inv20141241255165520
    [Google Scholar]
  6. MohammedR.R. ChongM.F. Treatment and decolorization of biologically treated palm oil mill effluent (POME) using banana peel as novel biosorbent.J. Environ. Manage.201413223724910.1016/j.jenvman.2013.11.03124321284
    [Google Scholar]
  7. Rodríguez CoutoS. Toca HerreraJ.L. Industrial and biotechnological applications of laccases: A review.Biotechnol. Adv.200624550051310.1016/j.biotechadv.2006.04.00316716556
    [Google Scholar]
  8. HwangT.K. Chemical composition of palm oil mill effluents.Planter197854749756
    [Google Scholar]
  9. RanaS. SinghL. WahidZ. LiuH. A recent overview of palm oil mill effluent management via bioreactor configurations.Curr. Pollut. Rep.20173425426710.1007/s40726‑017‑0068‑2
    [Google Scholar]
  10. ChanY.J. ChongM.F. LawC.L. Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic–aerobic bioreactor (IAAB).Bioresour. Technol.201212514515710.1016/j.biortech.2012.08.11823026327
    [Google Scholar]
  11. PohP.E. ChongM.F. Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor for thermophilic palm oil mill effluent (POME) treatment.Biomass Bioenergy20146723124210.1016/j.biombioe.2014.05.007
    [Google Scholar]
  12. ShafieN.F.A. MansorU.Q.A. YahyaA. SomA.M. NourA.H. HassanZ. YunusR.M.A.R.M. The performance study of Ultrasonic-assisted Membrane Anaerobic System (UMAS) for Chemical Oxygen Demand (COD) removal efficiency and methane gas production in Palm Oil Mill Effluent (POME) treatment.Proceedings of the 4th IET Clean Energy and Technology ConferenceKuala Lampur, Malaysia 14–15 November 2016 p. 1-510.1049/cp.2016.1346
    [Google Scholar]
  13. ChengY. ChongC. LamM. LeongW. ChuahL.F. SuzanaY. SetiabudiH. TangY. LimJ-W. Identification of microbial inhibitions and mitigation strategies towards cleaner bioconversions of Palm Oil Mill Effluent (POME): A review.J. Clean. Prod.2020280Part 1124346
    [Google Scholar]
  14. BalaJ.D. LalungJ. IsmailN. Biodegradation of palm oil mill effluent (POME) by bacterial.Int. J Sci. and Res.20144322503153
    [Google Scholar]
  15. LiewW.L. KassimM.A. MudaK. LohS.K. AffamA.C. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review.J. Environ. Manage.201514922223510.1016/j.jenvman.2014.10.01625463585
    [Google Scholar]
  16. LeeZ.S. ChinS.Y. LimJ.W. WitoonT. ChengC.K. Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review.Environ. Technol. Innov.20191510037710.1016/j.eti.2019.100377
    [Google Scholar]
  17. DarajehN. IdrisA. TruongP. AzizH. BakarR. ManChe Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluentAdv. Mater. Sci. Eng.20142014683579
    [Google Scholar]
  18. KarimA. IslamM.A. YousufA. KhanM.M.R. FaizalC.K.M. Microbial lipid accumulation through bioremediation of palm oil mill wastewater by bacillus cereus.ACS Sustain. Chem. & Eng.2019717145001450810.1021/acssuschemeng.9b01960
    [Google Scholar]
  19. WahiR. Luqman ChuahA. MobarekehM. NgainiZ. YawT. Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent.J. Environ. Chem. Eng.201651170177
    [Google Scholar]
  20. AzmiN.S. YunosK.F.M. Wastewater treatment of palm oil mill effluent (POME) by ultrafiltration membrane separation technique coupled with adsorption treatment as pretreatment.Agric. Agric. Sci. Procedia2014225726410.1016/j.aaspro.2014.11.037
    [Google Scholar]
  21. ChairunnisakA. ArifinB. SofyanH. LubisM.R. Comparative study on the removal of COD from POME by electrocoagulation and electro-Fenton methods: Process optimization.Conference Series: Materials Science and Engineering.Banda Aceh, Indonesia, September 2017, 20–21
    [Google Scholar]
  22. RavalK.M. VaswaniP.S. MajumderD.D.R. Biotransformation of a single amino-acid L-tyrosine into a bioactive molecule L-DOPAInternational J of Sci and Res.20122522503153
    [Google Scholar]
  23. MbarecheH. VeilletteM. BilodeauG. DuchaineC. Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols.PeerJ20208Febe852310.7717/peerj.852332110484
    [Google Scholar]
  24. NeifarA. SaibiW. BradaiM.N. AbdelmoulehA. GargouriA. Investigations on tyrosinase activity in melanin-free ink from Sepia officinalis: potential for food proteins cross-linking.Eur. Food Res. Technol.2012235461161810.1007/s00217‑012‑1784‑x
    [Google Scholar]
  25. KimK.S. KimJ.A. EomS.Y. LeeS.H. MinK.R. KimY. Inhibitory effect of piperlonguminine on melanin production in melanoma B16 cell line by downregulation of tyrosinase expression.Pigment Cell Res.2006191909810.1111/j.1600‑0749.2005.00281.x16420250
    [Google Scholar]
  26. KimK.J. YangY.J. Production of protocatechualdehyde using tyrosinase purified from potato.Hortic. Environ. Biotechnol.201253428328710.1007/s13580‑012‑0098‑z
    [Google Scholar]
  27. ZoccaF. LomolinoG. LanteA. 3,4-Dihydroxyphenylalanine gel diffusion assay for polyphenol oxidase quantification.Anal. Biochem.2008383233533610.1016/j.ab.2008.09.00118817742
    [Google Scholar]
  28. ValipourE. ArikanB. Optimization of tyrosinase enzyme production from native Bacillus sp. MV29 isolate.J of Appl Biol Sci2015927782
    [Google Scholar]
  29. PopaC. NeteaM.G. van RielP.L.C.M. van der MeerJ.W.M. StalenhoefA.F.H. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk.J. Lipid Res.200748475176210.1194/jlr.R600021‑JLR20017202130
    [Google Scholar]
  30. SirishaE. RajasekarN. NarasuM.L. Isolation and optimization of lipase producing bacteria from oil contaminated soils.Adv in Biol Res 201045249252
    [Google Scholar]
  31. KaradzicI. MasuiA. ZivkovicL. I. FujiwaraN. Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid.Journal of bio-sci and bio-engin200610228289
    [Google Scholar]
  32. RehmanS. BhattiH.N. BilalM. AsgherM. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics.Int. J. Biol. Macromol.2016911161116910.1016/j.ijbiomac.2016.06.08127365121
    [Google Scholar]
  33. BorkarP.S. BodadeR.G. RaoS.R. KhobragadeC.N. Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9.Braz. J. Microbiol.200940235836610.1590/S1517‑8382200900020002824031373
    [Google Scholar]
  34. SinghR. GuptaN. GoswamiV.K. GuptaR. A simple activity staining protocol for lipases and esterases.Appl. Microbiol. Biotechnol.200670667968210.1007/s00253‑005‑0138‑z16170531
    [Google Scholar]
  35. LeeD.W. KohY.S. KimK.J. KimB.C. ChoiH.J. KimD.S. SuhartonoM.T. PyunY.R. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1.FEMS Microbiol. Lett.1999179239340010.1111/j.1574‑6968.1999.tb08754.x10518742
    [Google Scholar]
  36. AmeriA. ShakibaieM. Amirpour-RS. AmeriA. Adeli-SardM. KhazaeliP. RahmaniH. ForootanfaH. Partial Purification and Characterization of a Thermoalkalophilic Lipase Originated from Bacillus atrophaeus FSHM2 and its Application for Ester Synthesis.Biotechnology (Faisalabad)201514415416410.3923/biotech.2015.154.164
    [Google Scholar]
  37. MartinezMV WhitakerJR The biochemistry and control of enzymatic browning.Trends in Food Sci & Tech19956619520010.1016/S0924‑2244(00)89054‑8
    [Google Scholar]
  38. SubhashG.S. KulkarniS.W. Isolation and characterization of tyrosinase producing Streptomyces luteogriseus. World J. Pharm. Res.20154413851395
    [Google Scholar]
  39. ZhangJ. CaiJ. DengY. ChenY. RenG. Characterization of melanin produced by a wild-type strain of Bacillus cereus. Front. Biol. China200721262910.1007/s11515‑007‑0004‑832288755
    [Google Scholar]
  40. KurianNK Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96 m depth (Sagar Sampada cruise #305)RSC Advances.201425611
    [Google Scholar]
  41. Essential groups and stability of glucosidase of Penicillium notatum. Ann. Microbiol.2008592285291
    [Google Scholar]
  42. LiuN. ZhangT. WangY.J. HuangY.P. OuJ.H. ShenP. A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Lett. Appl. Microbiol.200439540741210.1111/j.1472‑765X.2004.01599.x15482430
    [Google Scholar]
  43. FaccioG. KruusK. SaloheimoM. Thöny-MeyerL. Bacterial tyrosinases and their applications.Process Biochem.201247121749176010.1016/j.procbio.2012.08.018
    [Google Scholar]
  44. ValipourE. ArikanB. Increased production of tyrosinase from Bacillus megaterium strain M36 by the response surface method.Arch. Biol. Sci.201668365966810.2298/ABS151002058V
    [Google Scholar]
  45. RavalV.H. PillaiS. RawalC.M. SinghS.P. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria.Process Biochem.201449695596210.1016/j.procbio.2014.03.014
    [Google Scholar]
  46. SarkarT. PradhanS. PunniyamurthyT. Ruthenium(II)-Catalyzed Positional Selective C–H Oxygenation of N -Aryl-2-pyrimidines.J. Org. Chem.201883126444645310.1021/acs.joc.8b0071429761702
    [Google Scholar]
  47. RoyS. DasI. MunjalM. KarthikL. KumarG. KumarS. RaoK.V.B. Isolation and characterization of tyrosinase produced by marine actinobacteria and its application in the removal of phenol from aqueous environment.Front. Biol. (Beijing)20149430631610.1007/s11515‑014‑1324‑0
    [Google Scholar]
  48. VolpatoG. FiliceM. AyubM.A.Z. GuisanJ.M. PalomoJ.M. Single-step purification of different lipases from Staphylococcus warneri. J. Chromatogr. A20101217447347810.1016/j.chroma.2009.11.05519954784
    [Google Scholar]
  49. KumarD. KumarL. NagarS. RainaC. ParshadR. GuptaV.K. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions.Arch. Appl. Sci. Res.20124417631770
    [Google Scholar]
  50. ChauhanM. ChauhanR.S. GarlapatiV.K. Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability.BioMed Res. Int.201320131610.1155/2013/37496724106703
    [Google Scholar]
  51. ProbstA.J. HertelC. RichterL. WassillL. LudwigW. HammesW.P. Staphylococcus condimenti sp. nov., from soy sauce mash, and Staphylococcus carnosus (Schleifer and Fischer 1982) subsp. utilis subsp. nov.Int. J. Syst. Bacteriol.199848365165810.1099/00207713‑48‑3‑6519734019
    [Google Scholar]
  52. NishaP. AnitmolD. SarithaK.V. Production of cellulase from Micrococcus sp and effect of growth parameters.Int. J. Pharm. Res. Health Sci201423236240
    [Google Scholar]
  53. XieW. KhosasihV. SuwantoA. KimH.K. Characterization of lipases from Staphylococcus aureus and Staphylococcus epidermidis isolated from human facial sebaceous skin.J. Microbiol. Biotechnol.2012221849110.4014/jmb.1107.0706022297223
    [Google Scholar]
  54. RehmanS. BhattiH.N. BilalM. AsgherM. WangP. Catalytic, kinetic and thermodynamic characteristics of an extracellular lipase from Penicillium notatum. Catal. Lett.2017147128129110.1007/s10562‑016‑1931‑2
    [Google Scholar]
  55. IbrahimC.O. HayashiM. NagaiS. Purification and Some Properties of a Thermostable Lipase from Humicola lanuginosa No. 3.Agric. Biol. Chem.1987511374510.1080/00021369.1987.10867997
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501337787240930180432
Loading
/content/journals/cbiot/10.2174/0122115501337787240930180432
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): bioremediation, enzymes, lignin; palm oil sludge; Polyphenol oxidases; tyrosinase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test