Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Introduction

This study investigates the defense responses of tolerant susceptible varieties of tomato against the hemi biotroph pathogen .

Methods

The early infection of was characterized by a tolerant Pusa Ruby and a susceptible tomato variety, Oriental (VT- 946).

Results

The microscopy experiments showed more hyphal growth in a susceptible plant than in a tolerant one. The hyphae formed extensive branching, contacting the host surface to form a greater number of various infection structures for penetration in the susceptible host compared to the tolerant variety. Biochemical assays showed differences in the production of phenolics, proline, hydrogen peroxide, and catalase in the tomato varieties.

Conclusion

The differential expression profiles of the early response allene oxide synthase AOS gene were obtained over time in the two hosts.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501340396241114064519
2024-11-19
2025-01-31
Loading full text...

Full text loading...

References

  1. Al-SurhaneeA.A. AfzalM. BouqellahN.A. OufS.A. MuhammadS. JanM. KaleemS. HashemM. AlamriS. Abdel LatefA.A.H. AliO.M. SolimanM.H. SolimanM.H. The antifungal activity of Ag/CHI NPs against Rhizoctonia solani linked with tomato plant health.Plants20211011228310.3390/plants1011228334834647
    [Google Scholar]
  2. SumalathaN. PushpavathiB. JagadeeshwarR. ReddyR.V.S.K. Studies on blight of tomato incited by Rhizoctonia solani.Int. J. Curr. Microbiol. Appl. Sci.2018731050105910.20546/ijcmas.2018.703.125
    [Google Scholar]
  3. ChowdhuryS. BasuA. KunduS. Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases.Sci. Rep.2017711725110.1038/s41598‑017‑17248‑729222513
    [Google Scholar]
  4. ZhangX.Y. HuoH.L. XiX.M. LiuL.L. YuZ. HaoJ.J. Histological observation of potato in response to Rhizoctonia solani infection.Eur. J. Plant Pathol.2016145228930310.1007/s10658‑015‑0842‑1
    [Google Scholar]
  5. LiD. LiS. WeiS. SunW. Strategies to manage rice sheath blight: Lessons from interactions between rice and Rhizoctonia solani Rice (N. Y.)20211412110.1186/s12284‑021‑00466‑z33630178
    [Google Scholar]
  6. TaheriP. TarighiS. The role of pathogenesis-related proteins in the tomato-Rhizoctonia solani interaction.J. Bot. (Egypt)201220121610.1155/2012/137037
    [Google Scholar]
  7. NawrockaJ. SzczechM. MałolepszaU. Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Prot. Sci.2018541172310.17221/126/2016‑PPS
    [Google Scholar]
  8. MayoS. GutiérrezS. MalmiercaM.G. LorenzanaA. CampeloM.P. HermosaR. CasqueroP.A. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes.Front. Plant Sci.2015668510.3389/fpls.2015.0068526442006
    [Google Scholar]
  9. GonzalezM. PujolM. MetrauxJ.P. Gonzalez-GarciaV. BoltonM.D. Borrás-HidalgoO. Tobacco leaf spot and root rot caused by Rhizoctonia solani Kühn.Mol. Plant Pathol.201112320921610.1111/j.1364‑3703.2010.00664.x21355993
    [Google Scholar]
  10. RafieiV. VélëzH. DixeliusC. TzelepisG. Advances in molecular interactions on the Rhizoctonia solani-sugar beet pathosystem.Fungal Biol. Rev.20234410029710.1016/j.fbr.2022.11.005
    [Google Scholar]
  11. BasuA. ChowdhuryS. Ray ChaudhuriT. KunduS. Differential behaviour of sheath blight pathogen Rhizoctonia solani in tolerant and susceptible rice varieties before and during infection.Plant Pathol.20166581333134610.1111/ppa.12502
    [Google Scholar]
  12. Ajayi-OyetundeO.O. BradleyC.A. Rhizoctonia solani: Taxonomy, population biology and management of rhizoctonia seedling disease of soybean.Plant Pathol.201867131710.1111/ppa.12733
    [Google Scholar]
  13. RayS. MondalS. ChowdhuryS. KunduS. Differential responses of resistant and susceptible tomato varieties to inoculation with Alternaria solani.Physiol. Mol. Plant Pathol.201590788810.1016/j.pmpp.2015.04.002
    [Google Scholar]
  14. CarilloP. GibonY. PROTOCOL: Extraction and determination of prolin.2011Available from: https://www.researchgate.net/publication/211353600_PROTOCOL_Extraction_and_determination_of_proline(accessed on 23-10-2024)
    [Google Scholar]
  15. NikraftarF. TaheriP. Falahati RastegarM. TarighiS. Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms.Physiol. Mol. Plant Pathol.201381748310.1016/j.pmpp.2012.11.004
    [Google Scholar]
  16. NandiA. YanL.J. JanaC.K. DasN. Role of catalase in oxidative stress- and age-associated degenerative diseases.Oxid. Med. Cell. Longev.2019201911910.1155/2019/961309031827713
    [Google Scholar]
  17. TaheriP. TarighiS. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway.J. Plant Physiol.2010167320120810.1016/j.jplph.2009.08.00319729221
    [Google Scholar]
  18. BatesL.S. WaldrenR.P. TeareI.D. Rapid determination of free proline for water-stress studies.Plant Soil197339120520710.1007/BF00018060
    [Google Scholar]
  19. ChoudhuryB. ChowdhuryS. BiswasA.K. Regulation of growth and metabolism in rice ( Oryza sativa L.) by arsenic and its possible reversal by phosphate.J. Plant Interact.201161152410.1080/17429140903487552
    [Google Scholar]
  20. SenthilkumarM. AmaresanN. SankaranarayananA. Estimation of Catalase.Plant-Microbe Interactions.Springer202110.1007/978‑1‑0716‑1080‑0_28
    [Google Scholar]
  21. AebiH. Catalase in vitro.Methods in enzymology: Oxygen radicals in biological systems. PackerL. Science Direct1984121126[13]10.1016/S0076‑6879(84)05016‑3
    [Google Scholar]
  22. AbuQamarS. ChaiM.F. LuoH. SongF. MengisteT. Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory.Plant Cell20082071964198310.1105/tpc.108.05947718599583
    [Google Scholar]
  23. HayatS. HayatQ. AlyemeniM.N. WaniA.S. PichtelJ. AhmadA. HayatS. HayatQ. AlyemeniM.N. WaniA.S. PichtelJ. AhmadA. Role of proline under changing environments.Plant Signal. Behav.20127111456146610.4161/psb.2194922951402
    [Google Scholar]
  24. HossainM.A. HoqueA. Proline protects plants against abiotic oxidative stress: Biochemical and molecular mechanisms.Oxidative Damage to Plants Antioxidant Networks and SignalingAcademic Press201410.1016/B978‑0‑12‑799963‑0.00016‑2
    [Google Scholar]
  25. BullB. HungS. YuC. LinC.H. Hydrogen peroxide functions as a stress signal in plants.Bot. Bull. Acad. Sin.20054610.7016/BBAS.200501.0001
    [Google Scholar]
  26. YadahalliK.B. KalappanavarI.K. KachapurR. Role of phenolics in resistance to Rhizoctonia solani f. sp. sasakii Causing banded leaf and sheath blight of maize.Int. J. Curr. Microbiol. Appl. Sci.202110110.20546/ijcmas.2021.1001.x
    [Google Scholar]
  27. VargasW.A. MartínJ.M.S. RechG.E. RiveraL.P. BenitoE.P. Díaz-MínguezJ.M. ThonM.R. SuknoS.A. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize.Plant Physiol.201215831342135810.1104/pp.111.19039722247271
    [Google Scholar]
  28. MengisteT. Plant immunity to necrotrophs.Annu. Rev. Phytopathol.201250126729410.1146/annurev‑phyto‑081211‑17295522726121
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501340396241114064519
Loading
/content/journals/cbiot/10.2174/0122115501340396241114064519
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test