Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Mutations in metabolism-related genes in somatic cells potentially lead to disruption of metabolic pathways, which results in patients exhibiting different molecular and pathological features.

Objective

In this study, we focused on somatic mutation data to investigate the significance of metabolic mutation typing in guiding the prognosis and treatment of breast cancer patients.

Methods

The somatic mutation profile of breast cancer patients was analyzed and smoothed by utilizing a network diffusion model within the protein-protein interaction network to construct a comprehensive somatic mutation network diffusion profile. Subsequently, a deep clustering approach was employed to explore metabolic mutation typing in breast cancer based on integrated metabolic pathway information and the somatic mutation network diffusion profile. In addition, we employed deep neural networks and machine learning prediction models to assess the feasibility of predicting drug responses through somatic mutation network diffusion profiles.

Results

Significant differences in prognosis and metabolic heterogeneity were observed among the different metabolic mutation subtypes, characterized by distinct alterations in metabolic pathways and genetic mutations, and these mutational features offered potential targets for subtype-specific therapies. Furthermore, there was a strong consistency between the results of the drug response prediction model constructed on the somatic mutation network diffusion profile and the actual observed drug responses.

Conclusion

Metabolic mutation typing of cancer assists in guiding patient prognosis and treatment.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936298012240322091111
2024-04-08
2025-05-28
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. McDonaldE.S. ClarkA.S. TchouJ. ZhangP. FreedmanG.M. Clinical diagnosis and management of breast cancer.J. Nucl. Med.201657Suppl. 19S16S10.2967/jnumed.115.157834 26834110
    [Google Scholar]
  3. ShahS.M. KhanR.A. ArifS. SajidU. Artificial intelligence for breast cancer analysis: Trends & directions.Comput. Biol. Med.202214210522110.1016/j.compbiomed.2022.105221 35016100
    [Google Scholar]
  4. ScimecaM. UrbanoN. ToschiN. BonannoE. SchillaciO. Precision medicine in breast cancer: From biological imaging to artificial intelligence.Semin. Cancer Biol.2021721310.1016/j.semcancer.2021.04.019 33933626
    [Google Scholar]
  5. Orrantia-BorundaE. Anchondo-NunezP. Acuna-AguilarL.E. Gomez-VallesF.O. Ramirez-ValdespinoC.A. Subtypes of breast cancer.In: Breast Cancer. Brisbane (AU)202210.36255/exon‑publications‑breast‑cancer‑subtypes
    [Google Scholar]
  6. GaoJ.J. SwainS.M. LuminalA. Luminal a breast cancer and molecular assays: A review.Oncologist201823555656510.1634/theoncologist.2017‑0535 29472313
    [Google Scholar]
  7. AdesF. ZardavasD. Bozovic-SpasojevicI. Luminal B breast cancer: Molecular characterization, clinical management, and future perspectives.J. Clin. Oncol.201432252794280310.1200/JCO.2013.54.1870 25049332
    [Google Scholar]
  8. SpechtJ.M. DavidsonN.E. Optimal duration of trastuzumab for early HER2-positive breast cancer.Lancet2017389100751167116810.1016/S0140‑6736(17)30322‑7 28215659
    [Google Scholar]
  9. LoiblS. GianniL. HER2-positive breast cancer.Lancet2017389100872415242910.1016/S0140‑6736(16)32417‑5 27939064
    [Google Scholar]
  10. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  11. NederlofI. VoorwerkL. KokM. Facts and hopes in immunotherapy for early-stage triple-negative breast cancer.Clin. Cancer Res.202329132362237010.1158/1078‑0432.CCR‑22‑0701 36622327
    [Google Scholar]
  12. EmensL.A. Breast cancer immunotherapy: Facts and hopes.Clin. Cancer Res.201824351152010.1158/1078‑0432.CCR‑16‑3001 28801472
    [Google Scholar]
  13. GuoS. LiuX. ZhangJ. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels T cell-related prognostic risk model and tumor immune microenvironment modulation in triple-negative breast cancer.Comput. Biol. Med.202316110706610.1016/j.compbiomed.2023.107066 37263064
    [Google Scholar]
  14. SuD. LuQ. PanY. Immune-related gene-based prognostic signature for the risk stratification analysis of breast cancer.Curr. Bioinform.202217219620510.2174/1574893616666211005110732
    [Google Scholar]
  15. ZhangD. WangY. ZhaoF. YangQ. Integrated multiomics analyses unveil the implication of a costimulatory molecule score on tumor aggressiveness and immune evasion in breast cancer: A large-scale study through over 8,000 patients.Comput. Biol. Med.202315910686610.1016/j.compbiomed.2023.106866 37068318
    [Google Scholar]
  16. GreenmanC. StephensP. SmithR. Patterns of somatic mutation in human cancer genomes.Nature2007446713215315810.1038/nature05610 17344846
    [Google Scholar]
  17. MartincorenaI. RaineK.M. GerstungM. Universal patterns of selection in cancer and somatic tissues.Cell2017171510291041.e2110.1016/j.cell.2017.09.042 29056346
    [Google Scholar]
  18. ChenX. LinY. QuQ. Analyzing association between expression quantitative trait and cnv for breast cancer based on gene interaction network clustering and group sparse learning.Curr. Bioinform.202217435836810.2174/1574893617666220207095117
    [Google Scholar]
  19. AoC. YuL. ZouQ. Prediction of bio-sequence modifications and the associations with diseases.Brief. Funct. Genomics202120111810.1093/bfgp/elaa023 33313647
    [Google Scholar]
  20. FaubertB. SolmonsonA. DeBerardinisR.J. Metabolic reprogramming and cancer progression.Science20203686487eaaw547310.1126/science.aaw5473 32273439
    [Google Scholar]
  21. StephensP.J. TarpeyP.S. DaviesH. The landscape of cancer genes and mutational processes in breast cancer.Nature2012486740340040410.1038/nature11017 22722201
    [Google Scholar]
  22. WangH. ZhangZ. LiH. A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discovery.Cell Biosci.20231314110.1186/s13578‑023‑00991‑y 36849879
    [Google Scholar]
  23. LiuM. ZhouJ. XiQ. A computational framework of routine test data for the cost-effective chronic disease prediction.Brief. Bioinform.2023242bbad05410.1093/bib/bbad054 36772998
    [Google Scholar]
  24. ZhangZ. ChaiH. WangY. PanZ. YangY. Cancer survival prognosis with Deep Bayesian Perturbation Cox Network.Comput. Biol. Med.202214110501210.1016/j.compbiomed.2021.105012 34785075
    [Google Scholar]
  25. ZhangL. YangY. ChaiL. A deep learning model to identify gene expression level using cobinding transcription factor signals.Brief. Bioinform.2022231bbab50110.1093/bib/bbab501 34864886
    [Google Scholar]
  26. ZhangZ.Y. NingL. YeX. iLoc-miRNA: Extracellular/intracellular miRNA prediction using deep BiLSTM with attention mechanism.Brief. Bioinform.2022235bbac39510.1093/bib/bbac395 36070864
    [Google Scholar]
  27. WuL. YuanL. ZhaoG. LinH. LiS.Z. Deep clustering and visualization for end-to-end high-dimensional data analysis.IEEE Trans. Neural Netw. Learn. Syst.2022341185438554
    [Google Scholar]
  28. BoD. WangX. ShiC. ZhuM. LuE. CuiP. Structural deep clustering network.arXiv: 200201633202014001401
    [Google Scholar]
  29. NguyenB. FongC. LuthraA. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients.Cell20221853563575.e1110.1016/j.cell.2022.01.003 35120664
    [Google Scholar]
  30. RosarioS.R. LongM.D. AffrontiH.C. RowsamA.M. EngK.H. SmiragliaD.J. Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas.Nat. Commun.201891533010.1038/s41467‑018‑07232‑8 30552315
    [Google Scholar]
  31. LiberzonA. BirgerC. ThorvaldsdóttirH. GhandiM. MesirovJ.P. TamayoP. The molecular signatures database (MSigDB) hallmark gene set collection.Cell Syst.20151641742510.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  32. BhattacharyaS. DunnP. ThomasC.G. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research.Sci. Data20185118001510.1038/sdata.2018.15 29485622
    [Google Scholar]
  33. DingZ. ZuS. GuJ. Evaluating the molecule-based prediction of clinical drug responses in cancer.Bioinformatics201632192891289510.1093/bioinformatics/btw344 27354694
    [Google Scholar]
  34. ChawlaS. RockstrohA. LehmanM. Gene expression based inference of cancer drug sensitivity.Nat. Commun.2022131568010.1038/s41467‑022‑33291‑z 36167836
    [Google Scholar]
  35. Sanchez-VegaF. MinaM. ArmeniaJ. Oncogenic signaling pathways in the cancer genome atlas.Cell20181732321337.e1010.1016/j.cell.2018.03.035 29625050
    [Google Scholar]
  36. JiangP. GuS. PanD. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑1 30127393
    [Google Scholar]
  37. KöhlerS. BauerS. HornD. RobinsonP.N. Walking the interactome for prioritization of candidate disease genes.Am. J. Hum. Genet.200882494995810.1016/j.ajhg.2008.02.013 18371930
    [Google Scholar]
  38. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  39. WuT. HuE. XuS. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  40. RitchieM.E. PhipsonB. WuD. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  41. MayakondaA. LinD.C. AssenovY. PlassC. KoefflerH.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer.Genome Res.201828111747175610.1101/gr.239244.118 30341162
    [Google Scholar]
  42. BrownD. SmeetsD. SzékelyB. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations.Nat. Commun.2017811494410.1038/ncomms14944 28429735
    [Google Scholar]
  43. TriozziP.L. StirlingE.R. SongQ. Circulating immune bioenergetic, metabolic, and genetic signatures predict melanoma patients’ response to anti–pd-1 immune checkpoint blockade.Clin. Cancer Res.20222861192120210.1158/1078‑0432.CCR‑21‑3114 35284940
    [Google Scholar]
  44. LuZ. Priya RajanS.A. SongQ. 3D scaffold-free microlivers with drug metabolic function generated by lineage-reprogrammed hepatocytes from human fibroblasts.Biomaterials202126912066810.1016/j.biomaterials.2021.120668 33461059
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936298012240322091111
Loading
/content/journals/cbio/10.2174/0115748936298012240322091111
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test