Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

Variants of concern were identified in severe acute respiratory syndrome coronavirus 2, namely Alpha, Beta, Gamma, Delta, and Omicron. This study explores the mutations of the Omicron lineage and its differences from other lineages through a protein language model.

Methods

By inputting the severe acute respiratory syndrome coronavirus 2 wild-type sequence into the protein language model evolving pre-trained models-1v, this study obtained the score for each position mutating to other amino acids and calculated the overall trend of a new variant of concern mutation scores.

Results

It is found that when the proportion of unobserved mutations to observed mutations is 4:15, Omicron still generates a large number of newly emerging mutations. It was found that the overall score for the Omicron family is low, and the overall ranking for the Omicron family is low.

Conclusion

Mutations in the Omicron lineage are different from amino acid mutations in other lineages. The findings of this paper deepen the understanding of the spatial distribution of spike protein amino acid mutations and overall trends of newly emerging mutations corresponding to different variants of concern. This also provides insights into simulating the evolution of the Omicron lineage.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936291075240409080924
2024-04-27
2025-06-11
Loading full text...

Full text loading...

References

  1. WangH. PaulsonK.R. PeaseS.A. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21.Lancet2022399103341513153610.1016/S0140‑6736(21)02796‑3 35279232
    [Google Scholar]
  2. RaufA. IzneidA.T. OlatundeA. COVID-19 pandemic: Epidemiology, etiology, conventional and non-conventional therapies.Int. J. Environ. Res. Public Health20201721815510.3390/ijerph17218155 33158234
    [Google Scholar]
  3. RosaR.B. DantasW.M. do NascimentoJ.C.F. da SilvaM.V. de OliveiraR.N. PenaL.J. In vitro and in vivo models for studying SARS-CoV-2, the etiological agent responsible for COVID-19 pandemic.Viruses202113337910.3390/v13030379 33673614
    [Google Scholar]
  4. World Health OrganizationWHO coronavirus disease (COVID-19) dashboard.2023Available from: https://covid19.who.int/
    [Google Scholar]
  5. MullerH.J. Our load of mutations.Am. J. Hum. Genet.195022111176 14771033
    [Google Scholar]
  6. VeltmanJ.A. BrunnerH.G. De novo mutations in human genetic disease.Nat. Rev. Genet.201213856557510.1038/nrg3241 22805709
    [Google Scholar]
  7. TelentiA. HodcroftE.B. RobertsonD.L. The evolution and biology of SARS-CoV-2 variants.Cold Spring Harb. Perspect. Med.2022125a04139010.1101/cshperspect.a041390 35444005
    [Google Scholar]
  8. StefanelliP. TrentiniF. GuzzettaG. Co-circulation of SARS-CoV-2 alpha and gamma variants in Italy, February and March 2021.Euro Surveill.2022275210042910.2807/1560‑7917.ES.2022.27.5.2100429 35115077
    [Google Scholar]
  9. Clade and lineage nomenclature aids in genomic epidemiology studies of active hCoV-19 viruses[EB/OL].Available from: https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/
  10. TianF. TongB. SunL. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2.eLife202110e6909110.7554/eLife.69091 34414884
    [Google Scholar]
  11. PondéR.A.A. Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern.Virology2022572445410.1016/j.virol.2022.05.003 35580380
    [Google Scholar]
  12. EscaleraA ReicheGAS AslamS Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission.Cell Host Microbe2022303373387e7.
    [Google Scholar]
  13. Coronavirus variants are spreading in India — what scientists know so far.Available from: https://www.nature.com/articles/d41586-021-01274-7
  14. Centers For Disease Control And PteventionSARS-CoV-2 variant classifications and definitions.Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
  15. MohammadiM. ShayestehpourM. MirzaeiH. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines.Braz. J. Infect. Dis.202125410160610.1016/j.bjid.2021.101606 34428473
    [Google Scholar]
  16. BhattacharyaM. ChatterjeeS. SharmaA.R. LeeS.S. ChakrabortyC. Delta variant (B.1.617.2) of SARS-CoV-2: current understanding of infection, transmission, immune escape, and mutational landscape.Folia Microbiol.2023681172810.1007/s12223‑022‑01001‑3 35962276
    [Google Scholar]
  17. FariaN.R. MellanT.A. WhittakerC. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil.Science20213726544815821
    [Google Scholar]
  18. SafariI. ElahiE. Evolution of the SARS-CoV-2 genome and emergence of variants of concern.Arch. Virol.2022167229330510.1007/s00705‑021‑05295‑5 34846601
    [Google Scholar]
  19. WangP. CasnerR.G. NairM.S. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization.Cell Host Microbe2021295747751.e410.1016/j.chom.2021.04.007 33887205
    [Google Scholar]
  20. RamanR. PatelK.J. RanjanK. COVID-19: Unmasking emerging SARS-CoV-2 variants, vaccines and therapeutic strategies.Biomolecules202111799310.3390/biom11070993 34356617
    [Google Scholar]
  21. MwendaM. SaasaN. SinyangeN. Detection of B.1.351 SARS-CoV-2variant strain-Zambia, December 2020.MMWR Morb. Mortal. Wkly. Rep.202170828028210.15585/mmwr.mm7008e2 33630820
    [Google Scholar]
  22. CojocaruC. CojocaruE. TurcanuA. ZahariaD. Clinical challenges of SARS CoV 2 variants (Review).Exp. Ther. Med.202223641610.3892/etm.2022.11343 35601074
    [Google Scholar]
  23. ChavdaV. BezbaruahR. DekaK. NongrangL. KalitaT. The Delta and Omicron variants of SARS-CoV-2: what we know so far.Vaccines20221011192610.3390/vaccines10111926 36423021
    [Google Scholar]
  24. KhandiaR. SinghalS. AlqahtaniT. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic.Environ. Res.202220911281610.1016/j.envres.2022.112816 35093310
    [Google Scholar]
  25. World Health OrganizationTracking SARS-CoV-2 variants.Available from: https://www.who.int/en/activities/tracking-SARSCoV-2-variants/ 2021
    [Google Scholar]
  26. TaylorP.C. AdamsA.C. HuffordM.M. de la TorreI. WinthropK. GottliebR.L. Neutralizing monoclonal antibodies for treatment of COVID-19.Nat. Rev. Immunol.202121638239310.1038/s41577‑021‑00542‑x 33875867
    [Google Scholar]
  27. DispinseriS. SecchiM. PirilloM.F. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival.Nat. Commun.2021121267010.1038/s41467‑021‑22958‑8 33976165
    [Google Scholar]
  28. VianaR. MoyoS. AmoakoD.G. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa.Nature2022603790267968610.1038/s41586‑022‑04411‑y 35042229
    [Google Scholar]
  29. NagyA. BasiouniS. ParvinR. HafezH.M. ShehataA.A. Evolutionary insights into the furin cleavage sites of SARS-CoV-2 variants from humans and animals.Arch. Virol.202116692541254910.1007/s00705‑021‑05166‑z 34258664
    [Google Scholar]
  30. AbeywardhanaS. PremathilakaM. BandaranayakeU. PereraD. PeirisL.D.C. In silico study of SARS‐CoV‐2 spike protein RBD and human ACE‐2 affinity dynamics across variants and Omicron subvariants.J. Med. Virol.2023951e2840610.1002/jmv.28406 36519577
    [Google Scholar]
  31. SangP. ChenY.Q. LiuM.T. Electrostatic interactions are the primary determinant of the binding affinity of SARS-CoV-2 spike RBD to ACE2: A computational case study of omicron variants.Int. J. Mol. Sci.202223231479610.3390/ijms232314796 36499120
    [Google Scholar]
  32. TengI.T. NazzariA.F. ChoeM. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron.PLoS One2022175e026876710.1371/journal.pone.0268767 35609088
    [Google Scholar]
  33. GerdolM. DishnicaK. GiorgettiA. Emergence of a recurrent insertion in the N-terminal domain of the SARS-CoV-2 spike glycoprotein.Virus Res.202231019867410.1016/j.virusres.2022.198674 35021068
    [Google Scholar]
  34. WangL. ChengG. Sequence analysis of the emerging SARS‐CoV‐2 variant Omicron in South Africa.J. Med. Virol.20229441728173310.1002/jmv.27516 34897752
    [Google Scholar]
  35. VerkhivkerG. AgajanianS. KassabR. KrishnanK. Probing mechanisms of binding and allostery in the SARS-CoV-2 spike omicron variant complexes with the host receptor: Revealing functional roles of the binding hotspots in mediating epistatic effects and communication with allosteric pockets.Int. J. Mol. Sci.202223191154210.3390/ijms231911542 36232845
    [Google Scholar]
  36. KhairnarP. SoniM. HandaM. RiadiY. KesharwaniP. ShuklaR. Recent highlights on Omicron as a new SARS-COVID-19 variant: evolution, genetic mutation, and future perspectives.J. Drug Target.202230660361310.1080/1061186X.2022.2056187 35311601
    [Google Scholar]
  37. WangR. ChenJ. HozumiY. YinC. WeiG.W. Emerging vaccine-breakthrough SARS-CoV-2 variants.ACS Infect. Dis.20228354655610.1021/acsinfecdis.1c00557 35133792
    [Google Scholar]
  38. LiL. GaoM. JiaoP. Antibody engineering improves neutralization activity against K417 spike mutant SARS-CoV-2 variants.Cell Biosci.20221216310.1186/s13578‑022‑00794‑7 35581593
    [Google Scholar]
  39. KhanA. WarisH. RafiqueM. The Omicron (B.1.1.529) variant of SARS-CoV-2 binds to the hACE2 receptor more strongly and escapes the antibody response: Insights from structural and simulation data.Int. J. Biol. Macromol.202220043844810.1016/j.ijbiomac.2022.01.059 35063482
    [Google Scholar]
  40. DhamaK. NainuF. FrediansyahA. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies.J. Infect. Public Health202316141410.1016/j.jiph.2022.11.024 36446204
    [Google Scholar]
  41. ShahM. ShinJ.Y. WooH.G. Rational strategies for enhancing mAb binding to SARS-CoV-2 variants through CDR diversification and antibody-escape prediction.Front. Immunol.202314111317510.3389/fimmu.2023.1113175 37063859
    [Google Scholar]
  42. SyedA.M. CilingA. KhalidM.M. SreekumarB. ChenP.Y. KumarG.R. Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles.medRxiv2022
    [Google Scholar]
  43. CallawayE. LedfordH. How bad is Omicron? What scientists know so far.Nature2021600788819719910.1038/d41586‑021‑03614‑z 34857948
    [Google Scholar]
  44. SaxenaS.K. KumarS. AnsariS. PaweskaJ.T. MauryaV.K. TripathiA.K. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective.J. Med. Virol.202294417381744
    [Google Scholar]
  45. ZhaoZ. ZhouJ. TianM. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape.Nat. Commun.2022131495810.1038/s41467‑022‑32665‑7 36002453
    [Google Scholar]
  46. HarveyW.T. CarabelliA.M. JacksonB. SARS-CoV-2 variants, spike mutations and immune escape.Nat. Rev. Microbiol.202119740942410.1038/s41579‑021‑00573‑0 34075212
    [Google Scholar]
  47. SharmaV. RaiH. GautamD.N.S. PrajapatiP.K. Emerging evidence on Omicron (B.1.1.529) SARS-CoV-2 variant.J. Med. Virol.202294518761885
    [Google Scholar]
  48. NareshG.K.R.S. GuruprasadL. Mutations in the receptor-binding domain of human SARS CoV-2 spike protein increases its affinity to bind human ACE-2 receptor.J. Biomol. Struct. Dyn.20234162368238110.1080/07391102.2022.2032354 35109768
    [Google Scholar]
  49. DurmazB. AbdulmajedO. DurmazR. Mutations observed in the SARS-CoV-2 spike glycoprotein and their effects in the interaction of virus with ACE-2 receptor.Medeni Med J2020353253
    [Google Scholar]
  50. LennerstrandJ. SvenssonL. How did omicron evolve and why does this SARS-CoV-2 variant spread so fast.Lakartidningen202211921242
    [Google Scholar]
  51. LavecchiaA. Deep learning in drug discovery: Opportunities, challenges and future prospects.Drug Discov. Today201924102017203210.1016/j.drudis.2019.07.006 31377227
    [Google Scholar]
  52. BernstamE.V. ShiremanP.K. Meric-BernstamF. Artificial intelligence in clinical and translational science: Successes, challenges and opportunities.Clin. Transl. Sci.202215230932110.1111/cts.13175 34706145
    [Google Scholar]
  53. LauriolaI. LavelliA. AiolliF. An introduction to deep learning in natural language processing: Models, techniques, and tools.Neurocomputing202247044345610.1016/j.neucom.2021.05.103
    [Google Scholar]
  54. WuF. WuL. RadevD. XuJ. LiS.Z. Integration of pre-trained protein language models into geometric deep learning networks.Commun. Biol.20236187610.1038/s42003‑023‑05133‑1 37626165
    [Google Scholar]
  55. AndrewsD. KanaA.A. HopmanJ.J. State of the art report on design methodology.Marine Design XIII20181316
    [Google Scholar]
  56. RivesA. MeierJ. SercuT. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.Proc. Natl. Acad. Sci.202111815e201623911810.1073/pnas.2016239118 33876751
    [Google Scholar]
  57. BeplerT BergerB Learning the protein language: Evolution, structure, and function.Cell Syst2021126654669e3
    [Google Scholar]
  58. RaoR. MeierJ. SercuT. Transformer protein language models are unsupervised structure learners.Biorxiv20202020.1210.1101/2020.12.15.422761
    [Google Scholar]
  59. SunY. ShenY. Structure-informed protein language models are robust predictors for variant effects.Research Square202310.21203/rs.3.rs‑3219092/v1
    [Google Scholar]
  60. ReevesS. KalyaanamoorthyS. Zero-shot transfer of protein sequence likelihood models to thermostability prediction.BioRxiv20232023.0710.1101/2023.07.17.549396
    [Google Scholar]
  61. TutsoyO. PolatA. Linear and non-linear dynamics of the epidemics: System identification based parametric prediction models for the pandemic outbreaks.ISA Trans.20221249010210.1016/j.isatra.2021.08.008 34412892
    [Google Scholar]
  62. TutsoyO. Graph theory based large-scale machine learning with multi-dimensional constrained optimization approaches for exact epidemiological modelling of pandemic diseases.IEEE Trans. Pattern Anal. Mach. Intell.20234589836984510.1109/TPAMI.2023.3256421 37028303
    [Google Scholar]
  63. ZhouB. ZhouH. ZhangX. TEMPO: A transformer-based mutation prediction framework for SARS-CoV-2 evolution.Comput. Biol. Med.202315210626410.1016/j.compbiomed.2022.106264 36535209
    [Google Scholar]
  64. Al KhalidiS.Q.Y. KuppuswamyP. COVID-19: A framework for SARS-CoV-2 mutations prediction using machine learning techniques.Life Sci. J.20232043956
    [Google Scholar]
  65. AhmadiH. NikoofardV. NikoofardH. Prediction of SARS-CoV-2 spike protein mutations using Sequence-to-Sequence and Transformer models.BioRxiv20232023.0110.1101/2023.01.23.525130
    [Google Scholar]
  66. ZvyaginM. BraceA. HippeK. GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics.Int. J. High Perform. Comput. Appl.202337668370510.1177/10943420231201154
    [Google Scholar]
  67. DuesterwaldL. NguyenM. ChristensenP. Using genome sequence data to predict SARS-CoV-2 detection cycle threshold values.MedRxiv20222022.1110.1101/2022.11.14.22282297
    [Google Scholar]
  68. ChenJ. WangR. HozumiY. Emerging dominant SARS-CoV-2 variants.J. Chem. Inf. Model.202363133534210.1021/acs.jcim.2c01352 36577010
    [Google Scholar]
  69. LiJ. WuY.N. ZhangS. KangX.P. JiangT. Deep learning based on biologically interpretable genome representation predicts two types of human adaptation of SARS-CoV-2 variants.Brief. Bioinform.2022233bbac03610.1093/bib/bbac036 35233612
    [Google Scholar]
  70. ObermeyerF. JankowiakM. BarkasN. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness.Science202237665991327133210.1126/science.abm1208 35608456
    [Google Scholar]
  71. HanJ LiuT ZhangX D3AI-Spike: A deep learning platform for predicting binding affinity between SARS-CoV-2 spike receptor binding domain with multiple amino acid mutations and human angiotensin-converting enzyme 2.Comput Biol Med2022151Pt A10621210.1016/j.compbiomed.2022.106212 36327885
    [Google Scholar]
  72. TaftJM WeberCR GaoB Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain.Cell20221852140084022e14.
    [Google Scholar]
  73. MeierJ. RaoR. VerkuilR. LiuJ. SercuT. RivesA. Language models enable zero-shot prediction of the effects of mutations on protein function.Adv Neural Inf Process Syst202134292872930310.1101/2021.07.09.450648
    [Google Scholar]
  74. ChenJ. NieZ. WangY. Running ahead of evolution-AI based simulation for predicting future high-risk SARS-CoV-2 variants.BioRxiv20222022.1110.1101/2022.11.17.516989
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936291075240409080924
Loading
/content/journals/cbio/10.2174/0115748936291075240409080924
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): esm-1v; mutation; Omicron; Protein language models; SARS-CoV-2; VOC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test