Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

The use of machine learning models in sequence-based Protein-Protein Interaction prediction typically requires the conversion of amino acid sequences into feature vectors. From the literature, two approaches have been used to achieve this transformation. These are referred to as the Independent Protein Feature (IPF) and Merged Protein Feature (MPF) extraction methods. As observed, studies have predominantly adopted the IPF approach, while others preferred the MPF method, in which host and pathogen sequences are concatenated before feature encoding.

Objective

This presents the challenge of determining which approach should be adopted for improved HPPPI prediction. Therefore, this work introduces the Extended Protein Feature (EPF) method.

Methods

The proposed method combines the predictive capabilities of IPF and MPF, extracting essential features, handling multicollinearity, and removing features with zero importance. EPF, IPF, and MPF were tested using bacteria, parasite, virus, and plant HPPPI datasets and were deployed to machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Naïve Bayes (NB), Logistic Regression (LR), and Deep Forest (DF).

Results

The results indicated that MPF exhibited the lowest performance overall, whereas IPF performed better with decision tree-based models, such as RF and DF. In contrast, EPF demonstrated improved performance with SVM, LR, NB, and MLP and also yielded competitive results with DF and RF.

Conclusion

In conclusion, the EPF approach developed in this study exhibits substantial improvements in four out of the six models evaluated. This suggests that EPF offers competitiveness with IPF and is particularly well-suited for traditional machine learning models.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936286848240108074303
2024-03-07
2025-06-12
Loading full text...

Full text loading...

References

  1. ZhangB. LiJ. QuanL. ChenY. LüQ. Sequence-based prediction of protein-protein interaction sites by simplified long short-term memory network.Neurocomputing20193578610010.1016/j.neucom.2019.05.013
    [Google Scholar]
  2. ZieglerS.J. MallinsonS.J.B. St JohnP.C. BombleY.J. Advances in integrative structural biology: Towards understanding protein complexes in their cellular context.Comput. Struct. Biotechnol. J.20201921422510.1016/j.csbj.2020.11.05233425253
    [Google Scholar]
  3. RichardsA.L. EckhardtM. KroganN.J. Mass spectrometry‐based protein–protein interaction networks for the study of human diseases.Mol. Syst. Biol.2021171e879210.15252/msb.2018879233434350
    [Google Scholar]
  4. MeldalB.H.M. PerfettoL. CombeC. LubianaT. Ferreira CavalcanteJ.V. Bye-A-JeeH. WaagmeesterA. del-ToroN. ShrivastavaA. BarreraE. WongE. MlecnikB. BindeaG. PanneerselvamK. WillighagenE. RappsilberJ. PorrasP. HermjakobH. OrchardS. Complex portal 2022: New curation frontiers.Nucleic Acids Res.202250D1D578D58610.1093/nar/gkab99134718729
    [Google Scholar]
  5. KhatunM.S. ShoombuatongW. HasanM.M. KurataH. Evolution of sequence-based bioinformatics tools for protein-protein interaction prediction.Curr. Genomics202021645446310.2174/138920292199920062510393633093807
    [Google Scholar]
  6. MarchandA. Van Hall-BeauvaisA.K. CorreiaB.E. Computational design of novel protein–protein interactions – An overview on methodological approaches and applications.Curr. Opin. Struct. Biol.20227410237010.1016/j.sbi.2022.10237035405427
    [Google Scholar]
  7. BalasubramanianK. GuptaS.P. Quantum molecular dynamics, topological, group theoretical and graph theoretical studies of protein-protein interactions.Curr. Top. Med. Chem.201919642644310.2174/156802661966619030415270430836919
    [Google Scholar]
  8. HeifetzA. SladekV. Townsend-NicholsonA. FedorovD.G. Characterizing protein-protein interactions with the fragment molecular orbital method.Methods Mol. Biol.2020211418720510.1007/978‑1‑0716‑0282‑9_1332016895
    [Google Scholar]
  9. YugandharK. GuptaS. YuH. Inferring protein-protein interaction networks from mass spectrometry-based proteomic approaches: A mini-review.Comput. Struct. Biotechnol. J.20191780581110.1016/j.csbj.2019.05.00731316724
    [Google Scholar]
  10. SunT. ZhouB. LaiL. PeiJ. Sequence-based prediction of protein protein interaction using a deep-learning algorithm.BMC Bioinformatics201718127710.1186/s12859‑017‑1700‑228545462
    [Google Scholar]
  11. RosaS. BertasoC. PesaresiP. MasieroS. TaglianiA. Synthetic protein circuits and devices based on reversible protein-protein interactions: An overview.Life20211111117110.3390/life1111117134833047
    [Google Scholar]
  12. MurakamiY. MizuguchiK. Recent developments of sequence-based prediction of protein–protein interactions.Biophys. Rev.20221461393141110.1007/s12551‑022‑01038‑136589735
    [Google Scholar]
  13. NussbaumerT. Host_microbe_PPI - R package to analyse intra-species and inter-species protein-protein interactions in the model plant arabidopsis thaliana.bioRxiv201955127510.1101/551275
    [Google Scholar]
  14. DickK. SamanfarB. BarnesB. CoberE. R. MimeeB. TanL. H. MolnarS. J. BiggarK. K. GolshaniA. DehneF. GreenJ. R. PIPE4: Fast PPI predictor for comprehensive inter- and cross-species interactomes. Scientific Reports202010111510.1038/s41598‑019‑56895‑w
    [Google Scholar]
  15. SunggawaM.I. BustamamA. SiswantiningT. Sequence-based prediction of pathogen-host interaction using an ensemble learning classifier and moran autocorrelation feature encoding method.TURCOMAT20211214598605
    [Google Scholar]
  16. GhediraK. HamdiY. El BéjiA. OthmanH. An integrative computational approach for the prediction of human-plasmodium protein-protein interactions.BioMed Res. Int.2020202011110.1155/2020/208254033426052
    [Google Scholar]
  17. ChenH. GuoW. ShenJ. WangL. SongJ. Structural principles analysis of host-pathogen protein-protein interactions: A structural bioinformatics survey.IEEE Access20186117601177110.1109/ACCESS.2018.2807881
    [Google Scholar]
  18. SironiM. CaglianiR. ForniD. ClericiM. Evolutionary insights into host–pathogen interactions from mammalian sequence data.Nat. Rev. Genet.201516422423610.1038/nrg390525783448
    [Google Scholar]
  19. EngeringA. HogerwerfL. SlingenberghJ. Pathogen-host-environment interplay and disease emergence.Emerg. Microbes Infect.20122013210.1038/emi.2013.526038452
    [Google Scholar]
  20. StepsE. CausationD.D. Chapter 4-biomedical research chapter 4-lesson 4 host-pathogen interactions.Biomed. Res.2012123128
    [Google Scholar]
  21. ChenH. ShenJ. WangL. SongJ. Towards data analytics of pathogen-host protein-protein interaction: A survey.Proceedings - 2016 IEEE International Congress on Big Data, BigData Congress 201637738810.1109/BigDataCongress.2016.60
    [Google Scholar]
  22. KaurA. KaurP. AhujaS. Förster resonance energy transfer (FRET) and applications thereof.Anal. Methods202012465532555010.1039/D0AY01961E33210685
    [Google Scholar]
  23. ChrétienA.È. Gagnon-ArsenaultI. DubéA.K. BarbeauX. DesprésP.C. LamotheC. Dion-CôtéA.M. LagüeP. LandryC.R. Extended linkers improve the detection of protein-protein interactions (PPIs) by dihydrofolate reductase protein-fragment complementation assay (DHFR PCA) in living cells.Mol. Cell. Proteomics201817237338310.1074/mcp.TIR117.00038529203496
    [Google Scholar]
  24. PichlerovaK. HanesJ. Technologies for the identification and validation of protein-protein interactions.Gen. Physiol. Biophys.202140649552210.4149/gpb_202103534897023
    [Google Scholar]
  25. HoY. GruhlerA. HeilbutA. BaderG.D. MooreL. AdamsS.L. MillarA. TaylorP. BennettK. BoutilierK. YangL. WoltingC. DonaldsonI. SchandorffS. ShewnaraneJ. VoM. TaggartJ. GoudreaultM. MuskatB. AlfaranoC. DewarD. LinZ. MichalickovaK. WillemsA.R. SassiH. NielsenP.A. RasmussenK.J. AndersenJ.R. JohansenL.E. HansenL.H. JespersenH. PodtelejnikovA. NielsenE. CrawfordJ. PoulsenV. SørensenB.D. MatthiesenJ. HendricksonR.C. GleesonF. PawsonT. MoranM.F. DurocherD. MannM. HogueC.W.V. FigeysD. TyersM. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry.Nature2002415686818018310.1038/415180a11805837
    [Google Scholar]
  26. FormstecherE. ArestaS. ColluraV. HamburgerA. MeilA. TrehinA. ReverdyC. BetinV. MaireS. BrunC. JacqB. ArpinM. BellaicheY. BellusciS. BenarochP. BornensM. ChanetR. ChavrierP. DelattreO. DoyeV. FehonR. FayeG. GalliT. GiraultJ.A. GoudB. de GunzburgJ. JohannesL. JunierM.P. MirouseV. MukherjeeA. PapadopouloD. PerezF. PlessisA. RosséC. SauleS. Stoppa-LyonnetD. VincentA. WhiteM. LegrainP. WojcikJ. CamonisJ. DavietL. Protein interaction mapping: A drosophila case study.Genome Res.200515337638410.1101/gr.265910515710747
    [Google Scholar]
  27. NicodC. Banaei-EsfahaniA. CollinsB.C. Elucidation of host–pathogen protein–protein interactions to uncover mechanisms of host cell rewiring.Curr. Opin. Microbiol.20173971510.1016/j.mib.2017.07.00528806587
    [Google Scholar]
  28. KhorsandB. SavadiA. ZahiriJ. NaghibzadehM. Alpha influenza virus infiltration prediction using virus-human protein-protein interaction network.Math. Biosci. Eng.20201743109312910.3934/mbe.202017632987519
    [Google Scholar]
  29. ChenH. LiF. WangL. JinY. ChiC.H. KurganL. SongJ. ShenJ. Systematic evaluation of machine learning methods for identifying human–pathogen protein–protein interactions.Brief. Bioinform.2021223bbaa06810.1093/bib/bbaa06832459334
    [Google Scholar]
  30. AromolaranO. AromolaranD. IsewonI. OyeladeJ. Machine learning approach to gene essentiality prediction: A review.Briefings in BioinformaticsOxford University Press 202110.1093/bib/bbab128
    [Google Scholar]
  31. LoaizaC. Prediction of host-pathogen protein-protein interactions using.Student Research SymposiumUtah State University2019
    [Google Scholar]
  32. BrierleyL. FowlerA. Predicting the animal hosts of coronaviruses from compositional biases of spike protein and whole genome sequences through machine learning.PLoS Pathog.2021174e100914910.1371/journal.ppat.100914933878118
    [Google Scholar]
  33. PrasastyV.D. HutagalungR.A. GunadiR. SofiaD.Y. RosmalenaR. YazidF. SinagaE. Prediction of human-Streptococcus pneumoniae protein-protein interactions using logistic regression.Comput. Biol. Chem.202192March10749210.1016/j.compbiolchem.2021.10749233964803
    [Google Scholar]
  34. VyasR. BapatS. GoelP. KarthikeyanM. TambeS.S. KulkarniB.D. Application of genetic programming (GP) formalism for building disease predictive models from protein-protein interactions (PPI) data.IEEE/ACM Trans. Comput. Biol. Bioinformatics2018151273710.1109/TCBB.2016.262104228113781
    [Google Scholar]
  35. TahaK. Employing Machine Learning Techniques to Detect Protein-Protein Interaction: A Survey, Experimental, and Comparative Evaluations.bioRxiv20232023.08.22.55432110.1101/2023.08.22.554321
    [Google Scholar]
  36. AngelisD. SofosF. KarakasidisT.E. Artificial intelligence in physical sciences: Symbolic regression trends and perspectives.Arch. Comput. Methods Eng.20233063845386510.1007/s11831‑023‑09922‑z37359747
    [Google Scholar]
  37. PapastamatiouK. SofosF. KarakasidisT.E. Machine learning symbolic equations for diffusion with physics-based descriptions.AIP Adv.202212202500410.1063/5.0082147
    [Google Scholar]
  38. PaturiU.M.R. CherukuS. Application and performance of machine learning techniques in manufacturing sector from the past two decades: A review.Mater. Today Proc.2021382392240110.1016/j.matpr.2020.07.209
    [Google Scholar]
  39. DoganA. BirantD. Machine learning and data mining in manufacturing.Expert Syst. Appl.202116616611406010.1016/j.eswa.2020.114060
    [Google Scholar]
  40. NguyenQ.H. LyH.B. HoL.S. Al-AnsariN. LeH.V. TranV.Q. PrakashI. PhamB.T. Influence of data splitting on performance of machine learning models in prediction of shear strength of soil.Math. Probl. Eng.2021202111510.1155/2021/4832864
    [Google Scholar]
  41. YangL. XiaJ.F. GuiJ. Prediction of protein-protein interactions from protein sequence using local descriptors.Protein Pept. Lett.20101791085109010.2174/09298661079176030620509850
    [Google Scholar]
  42. BellE. W. SchwartzJ. H. FreddolinoP. L. ZhangY. PEPPI: Whole-proteome protein-protein interaction prediction through structure and sequence similarity, functional association, and machine learning.J Mol Biol 202216753010.1016/j.jmb.2022.167530
    [Google Scholar]
  43. DongT.N. BrogdenG. GeroldG. KhoslaM. A multitask transfer learning framework for the prediction of virus-human protein–protein interactions.BMC Bioinformatics202122157210.1186/s12859‑021‑04484‑y34837942
    [Google Scholar]
  44. labxchangeAnfinsen’s Experiment Shows That Primary Structure Determines Protein Conformation - LabXchangeAvailable from: https://www.labxchange.org/library/items/lb:LabXchange:e17fa649:html:1 (accessed 2023-12-11).
    [Google Scholar]
  45. ANFINSENC. B. HABERE. SELAM. WHITE J.F. H. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain.Proc. Natl. Acad. Sci. 19614792810.1063/1.3066543
    [Google Scholar]
  46. CharihF. BiggarK.K. GreenJ.R. Assessing sequence-based protein–protein interaction predictors for use in therapeutic peptide engineering.Sci. Rep.2022121961010.1038/s41598‑022‑13227‑935688894
    [Google Scholar]
  47. GöktepeY.E. KodazH. Prediction of protein-protein interactions using an effective sequence based combined method.Neurocomputing2018303687410.1016/j.neucom.2018.03.062
    [Google Scholar]
  48. ChenM. JuC.J.T. ZhouG. ChenX. ZhangT. ChangK.W. ZanioloC. WangW. Multifaceted protein–protein interaction prediction based on Siamese residual RCNN.Bioinformatics20193514i305i31410.1093/bioinformatics/btz32831510705
    [Google Scholar]
  49. LiuL. ZhuX. MaY. PiaoH. YangY. HaoX. FuY. WangL. PengJ. Combining sequence and network information to enhance protein–protein interaction prediction.BMC Bioinformatics202021S16Suppl. 1653710.1186/s12859‑020‑03896‑633323120
    [Google Scholar]
  50. DyerM.D. MuraliT.M. SobralB.W. Supervised learning and prediction of physical interactions between human and HIV proteins.Infect. Genet. Evol.201111591792310.1016/j.meegid.2011.02.02221382517
    [Google Scholar]
  51. ChenC. ZhangQ. MaQ. YuB. LightGBM-PPI: Predicting protein-protein interactions through LightGBM with multi-information fusion.Chemom. Intell. Lab. Syst.2019191May546410.1016/j.chemolab.2019.06.003
    [Google Scholar]
  52. AfifyH.M. ZanatyM.S. Computational predictions for protein sequences of COVID-19 virus via machine learning algorithms.Med. Biol. Eng. Comput.20215991723173410.1007/s11517‑021‑02412‑z34291385
    [Google Scholar]
  53. WangS. LiuS. Protein sub-nuclear localization based on effective fusion representations and dimension reduction algorithm LDA.Int. J. Mol. Sci.20151612303433036110.3390/ijms16122623726703574
    [Google Scholar]
  54. NietoJ.J. TorresA. GeorgiouD.N. KarakasidisT.E. Fuzzy polynucleotide spaces and metrics.Bull. Math. Biol.200668370372510.1007/s11538‑005‑9020‑516794951
    [Google Scholar]
  55. JhaK. SahaS. TanveerM. Prediction of protein-protein interactions using stacked auto-encoder.Trans. Emerg. Telecommun. Technol.20202021November11310.1002/ett.4256
    [Google Scholar]
  56. Kösesoyİ. GökM. ÖzC. A new sequence based encoding for prediction of host – pathogen protein interactions.Comput Biol Chem.20197817017710.1016/j.compbiolchem.2018.12.001
    [Google Scholar]
  57. DeyL. ChakrabortyS. MukhopadhyayA. Machine learning techniques for sequence-based prediction of viral–host interactions between SARS-CoV-2 and human proteins.Biomed. J.202043543845010.1016/j.bj.2020.08.00333036956
    [Google Scholar]
  58. DingZ. KiharaD. Computational methods for predicting protein‐protein interactions using various protein features.Curr. Protoc. Protein Sci.2018931e6210.1002/cpps.6229927082
    [Google Scholar]
  59. ZhangL. YuG. GuoM. WangJ. Predicting protein-protein interactions using high-quality non-interacting pairs.BMC Bioinformatics201819S19Suppl. 1952510.1186/s12859‑018‑2525‑330598096
    [Google Scholar]
  60. SoyemiJ. IsewonI. OyeladeJ. AdebiyiE. Inter-species/host-parasite protein interaction predictions reviewed.Curr. Bioinform.201813439640610.2174/157489361366618010815585131496926
    [Google Scholar]
  61. Kösesoyİ. GökM. Kahveci̇T. Prediction of host-pathogen protein interactions by extended network model.Turk. J. Biol.202145213814810.3906/biy‑2009‑433907496
    [Google Scholar]
  62. WuchtyS. Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens.PLoS One2011611e2696010.1371/journal.pone.002696022114664
    [Google Scholar]
  63. GordonD.E. JangG.M. BouhaddouM. XuJ. ObernierK. WhiteK.M. O’MearaM.J. RezeljV.V. GuoJ.Z. SwaneyD.L. TumminoT.A. HüttenhainR. KaakeR.M. RichardsA.L. TutuncuogluB. FoussardH. BatraJ. HaasK. ModakM. KimM. HaasP. PolaccoB.J. BrabergH. FabiusJ.M. EckhardtM. SoucherayM. BennettM.J. CakirM. McGregorM.J. LiQ. MeyerB. RoeschF. ValletT. Mac KainA. MiorinL. MorenoE. NaingZ.Z.C. ZhouY. PengS. ShiY. ZhangZ. ShenW. KirbyI.T. MelnykJ.E. ChorbaJ.S. LouK. DaiS.A. Barrio-HernandezI. MemonD. Hernandez-ArmentaC. LyuJ. MathyC.J.P. PericaT. PillaK.B. GanesanS.J. SaltzbergD.J. RakeshR. LiuX. RosenthalS.B. CalvielloL. VenkataramananS. Liboy-LugoJ. LinY. HuangX.P. LiuY. WankowiczS.A. BohnM. SafariM. UgurF.S. KohC. SavarN.S. TranQ.D. ShengjulerD. FletcherS.J. O’NealM.C. CaiY. ChangJ.C.J. BroadhurstD.J. KlippstenS. SharpP.P. WenzellN.A. Kuzuoglu-OzturkD. WangH.Y. TrenkerR. YoungJ.M. CaveroD.A. HiattJ. RothT.L. RathoreU. SubramanianA. NoackJ. HubertM. StroudR.M. FrankelA.D. RosenbergO.S. VerbaK.A. AgardD.A. OttM. EmermanM. JuraN. von ZastrowM. VerdinE. AshworthA. SchwartzO. d’EnfertC. MukherjeeS. JacobsonM. MalikH.S. FujimoriD.G. IdekerT. CraikC.S. FloorS.N. FraserJ.S. GrossJ.D. SaliA. RothB.L. RuggeroD. TauntonJ. KortemmeT. BeltraoP. VignuzziM. García-SastreA. ShokatK.M. ShoichetB.K. KroganN.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Nature2020583781645946810.1038/s41586‑020‑2286‑932353859
    [Google Scholar]
  64. MukhtarM.S. CarvunisA.R. DrezeM. EppleP. SteinbrennerJ. MooreJ. TasanM. GalliM. HaoT. NishimuraM.T. PevznerS.J. DonovanS.E. GhamsariL. SanthanamB. RomeroV. PoulinM.M. GebreabF. GutierrezB.J. TamS. MonachelloD. BoxemM. HarbortC.J. McDonaldN. GaiL. ChenH. HeY. VandenhauteJ. RothF.P. HillD.E. EckerJ.R. VidalM. BeynonJ. BraunP. DanglJ.L. CabralA. Van Den AckervekenG. BatorJ. YatusevichR. KatouS. ParkerJ. FabroG. JonesJ. CoatesM. PayneT. European Union Effectoromics Consortium Independently evolved virulence effectors converge onto hubs in a plant immune system network.Science2011333604259660110.1126/science.120365921798943
    [Google Scholar]
  65. PacalI. KaramanA. KarabogaD. AkayB. BasturkA. NalbantogluU. CoskunS. An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets.Comput. Biol. Med.202214114110503110.1016/j.compbiomed.2021.10503134802713
    [Google Scholar]
  66. NajmM. AzencottC.A. PlayeB. StovenV. Drug target identification with machine learning: How to choose negative examples.Int. J. Mol. Sci.20212210511810.3390/ijms2210511834066072
    [Google Scholar]
  67. OyeladeJ. IsewonI. RotimiS. OkunorenI. Modeling of the glycolysis pathway in plasmodium falciparum using petri nets.Bioinform. Biol. Insights201610BBI.S3729610.4137/BBI.S3729627199550
    [Google Scholar]
  68. SoyemiJ. IsewonI. OyeladeJ. AdebiyiE. Functional enrichment of human protein complexes in malaria parasites.Proceedings of the IEEE International Conference on Computing, Networking and Informatics, ICCNI 201720171610.1109/ICCNI.2017.8123791
    [Google Scholar]
  69. CDC Impact of Malaria Worldwide.Centers for Disease Control and Prevention2020
    [Google Scholar]
  70. MayoC. Malaria transmission cycle.Available from: https://www.mayoclinic.org/diseases-conditions/malaria/multimedia/malaria-transmission-cycle/img-20006373
    [Google Scholar]
  71. Tracking progress against malariaWorld Malaria Report2021
    [Google Scholar]
  72. WeßlingR. EppleP. AltmannS. HeY. YangL. HenzS.R. McDonaldN. WileyK. BaderK.C. GläßerC. MukhtarM.S. HaigisS. GhamsariL. StephensA.E. EckerJ.R. VidalM. JonesJ.D.G. MayerK.F.X. Ver Loren van ThemaatE. WeigelD. Schulze-LefertP. DanglJ.L. PanstrugaR. BraunP. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life.Cell Host Microbe201416336437510.1016/j.chom.2014.08.00425211078
    [Google Scholar]
  73. AganyD. D. M. PietriJ. E. GnimpiebaE. Z. Assessment of vector-host-pathogen relationships using data mining and machine learning.Comput. Struct. Biotechnol. J. 20201704172110.1016/j.csbj.2020.06.031
    [Google Scholar]
  74. ChenH. ShenJ. WangL. ChiC.H. APEX2S: A two‐layer machine learning model for discovery of host‐pathogen protein‐protein interactions on cloud‐based multiomics data.Concurr. Comput.20203223e584610.1002/cpe.5846
    [Google Scholar]
  75. ChenZ. ZhaoP. LiF. LeierA. Marquez-LagoT.T. WangY. WebbG.I. SmithA.I. DalyR.J. ChouK.C. SongJ. iFeature : A python package and web server for features extraction and selection from protein and peptide sequences.Bioinformatics201834142499250210.1093/bioinformatics/bty14029528364
    [Google Scholar]
  76. HjerpeA. Degree project in the field of technology computing random forests variable importance measures (VIM) on mixed continuous and categorical data computing random forests variable importance measures (VIM) on mixed numerical and categorical data beräknin.No. Vim2016
    [Google Scholar]
  77. AltmannA. ToloşiL. SanderO. LengauerT. Permutation importance: A corrected feature importance measure.Bioinformatics201026101340134710.1093/bioinformatics/btq13420385727
    [Google Scholar]
  78. Gra̧bczewskiK. JankowskiN. Feature selection with decision tree criterion.HIS 2005: Fifth International Conference on Hybrid Intelligent Systems.200521221710.1109/ICHIS.2005.43
    [Google Scholar]
  79. KazemitabarS.J. AminiA.A. BloniarzA. TalwalkarA. Variable importance using decision trees.In: Adv Neural Inf Process Syst2017426435
    [Google Scholar]
  80. ChengQ. VarshneyP.K. AroraM.K. Logistic regression for feature selection and soft classification of remote sensing data.IEEE Geosci. Remote Sens. Lett.20063449149410.1109/LGRS.2006.877949
    [Google Scholar]
  81. AzhagusundariB. ThanamaniA.S. Feature selection based on information gain.Int. J. Innov. Technol. Explor. Eng.2013221821
    [Google Scholar]
  82. ShaltoutN.A. El-HefnawiM. RafeaA. MoustafaA. Information gain as a feature selection method for the efficient classification of influenza based on viral hosts.Lect. Notes Eng. Comput. Sci.20141July625631
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936286848240108074303
Loading
/content/journals/cbio/10.2174/0115748936286848240108074303
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test