Skip to content
2000
Volume 19, Issue 10
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Computational molecular docking plays an important role in determining the precise receptor-ligand conformation, which becomes a powerful tool for drug discovery. In the past 30 years, most computational docking methods have treated the receptor structure as a rigid body, although flexible docking often yields higher accuracy. The main disadvantage of flexible docking is its significantly higher computational cost. Due to the fact that different protein pocket residues exhibit different degrees of flexibility, semi-flexible docking methods, balancing rigid docking and flexible docking, have demonstrated success in predicting highly accurate conformations with a relatively low computational cost.

Methods

In our study, the number of flexible pocket residues was assessed by quantitative analysis, and a novel adaptive residue flexibility prediction method, named A-RFP, was proposed to improve the docking performance. Based on the homologous information, a joint strategy is used to predict the pocket residue flexibility by combining RMSD, the distance between the residue sidechain and the ligand, and the sidechain orientation. For each receptor-ligand pair, A-RFP provides a docking conformation with the optimal affinity.

Results

By analyzing the docking affinities of 3507 target-ligand pairs in 5 different values ranging from 0 to 10, we found there is a general trend that the larger number of flexible residues inevitably improves the docking results by using Autodock Vina. However, a certain number of counterexamples still exist. To validate the effectiveness of A-RFP, the experimental assessment was tested in a small-scale virtual screening on 5 proteins, which confirmed that A-RFP could enhance the docking performance. And the flexible-receptor virtual screening on a low-similarity dataset with 85 receptors validates the accuracy of residue flexibility comprehensive evaluation. Moreover, we studied three receptors with FDA-approved drugs, which further proved A-RFP can play a suitable role in ligand discovery.

Conclusion

Our analysis confirms that the screening performance of the various numbers of flexible residues varies wildly across receptors. It suggests that a fine-grained docking method would offset the aforementioned deficiency. Thus, we presented A-RFP, an adaptive pocket residue flexibility prediction method based on homologous information. Without considering computational resources and time costs, A-RFP provides the optimal docking result.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936258790240101062642
2024-02-19
2024-11-22
Loading full text...

Full text loading...

References

  1. BullS.C. DoigA.J. Properties of protein drug target classes.PLoS One2015103e011795510.1371/journal.pone.0117955 25822509
    [Google Scholar]
  2. Rask-AndersenM. AlmA(c)n MS, SchiAth HB. Trends in the exploitation of novel drug targets.Nat. Rev. Drug Discov.201110857959010.1038/nrd3478 21804595
    [Google Scholar]
  3. NamsaniS. PramanikD. KhanM.A. RoyS. SinghJ.K. Metadynamics-based enhanced sampling protocol for virtual screening: Case study for 3CLpro protein for SARS-CoV-2.J. Biomol. Struct. Dyn.2021116 33663346
    [Google Scholar]
  4. StarzecA. MitevaM.A. LadamP. VilloutreixB.O. PerretG.Y. Discovery of novel inhibitors of vascular endothelial growth factor-A?”Neuropilin-1 interaction by structure-based virtual screening.Bioorg. Med. Chem.201422154042404810.1016/j.bmc.2014.05.068 24961874
    [Google Scholar]
  5. El-HachemN. Haibe-KainsB. KhalilA. KobeissyF.H. NemerG. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study.In: Neuroproteomics.Springer201739140310.1007/978‑1‑4939‑6952‑4_20
    [Google Scholar]
  6. SundbergS. High-throughput and ultra-high-throughput screening: Solution- and cell-based approaches.Curr. Opin. Biotechnol.2000111475310.1016/S0958‑1669(99)00051‑8 10679349
    [Google Scholar]
  7. TaiH.K. JusohS.A. SiuS.W.I. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening.J. Cheminform.20181016210.1186/s13321‑018‑0320‑9 30552524
    [Google Scholar]
  8. LiuY. ZhaoL. LiW. ZhaoD. SongM. YangY. FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm.J. Comput. Chem.2013341677510.1002/jcc.23108 22961860
    [Google Scholar]
  9. NgM.C.K. FongS. SiuS.W.I. PSOVina: The hybrid particle swarm optimization algorithm for protein?”ligand docking.J. Bioinform. Comput. Biol.2015133154100710.1142/S0219720015410073 25800162
    [Google Scholar]
  10. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  11. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  12. RavindranathP.A. ForliS. GoodsellD.S. OlsonA.J. SannerM.F. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility.PLOS Comput. Biol.20151112e100458610.1371/journal.pcbi.1004586 26629955
    [Google Scholar]
  13. WongK.M. TaiH.K. SiuS.W.I. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.Chem. Biol. Drug Des.20219719711010.1111/cbdd.13764 32679606
    [Google Scholar]
  14. FischerM. ColemanR.G. FraserJ.S. ShoichetB.K. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery.Nat. Chem.20146757558310.1038/nchem.1954 24950326
    [Google Scholar]
  15. KumarA. ZhangK.Y.J. Computational fragment-based screening using RosettaLigand: The SAMPL3 challenge.J. Comput. Aided Mol. Des.201226560361610.1007/s10822‑011‑9523‑0 22246345
    [Google Scholar]
  16. KovealD. ClarksonM.W. WoodT.K. PageR. PetiW. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonasaeruginosa.J. Mol. Biol.2013425122219223110.1016/j.jmb.2013.03.023 23524133
    [Google Scholar]
  17. RauhD. KlebeG. StubbsM.T. Understanding protein-ligand interactions: The price of protein flexibility.J. Mol. Biol.200433551325134110.1016/j.jmb.2003.11.041 14729347
    [Google Scholar]
  18. CosconatiS. MarinelliL. Di LevaF.S. Protein flexibility in virtual screening: The BACE-1 case study.J. Chem. Inf. Model.201252102697270410.1021/ci300390h 23005250
    [Google Scholar]
  19. LiW. GodzikA. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences.Bioinformatics200622131658165910.1093/bioinformatics/btl158 16731699
    [Google Scholar]
  20. PettersenE.F. GoddardT.D. HuangC.C. UCSF Chimera?”A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  21. NajmanovichR. KuttnerJ. SobolevV. EdelmanM. Side-chain flexibility in proteins upon ligand binding.Proteins200039326126810.1002/(SICI)1097‑0134(20000515)39:3261::AID‑PROT903.0.CO;2‑4 10737948
    [Google Scholar]
  22. KuriataA. GierutA.M. OlenieckiT. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures.Nucleic Acids Res.201846W1W338-4310.1093/nar/gky356 29762700
    [Google Scholar]
  23. WangZ. SunH. YaoX. Comprehensive evaluation of ten docking programs on a diverse set of protein?”ligand complexes: the prediction accuracy of sampling power and scoring power.Phys. Chem. Chem. Phys.20161818129641297510.1039/C6CP01555G 27108770
    [Google Scholar]
  24. GaillardT. Evaluation of AutoDock and AutoDock vina on the CASF-2013 benchmark.J. Chem. Inf. Model.20185881697170610.1021/acs.jcim.8b00312 29989806
    [Google Scholar]
  25. FriesnerR.A. BanksJ.L. MurphyR.B. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  26. IrwinJ.J. SterlingT. MysingerM.M. BolstadE.S. ColemanR.G. And modeling (2012). ZINC: A free tool to discover chemistry for biology.J. Chem Inform.20125217571768
    [Google Scholar]
  27. KouranovA. XieL. de la CruzJ. The RCSB PDB information portal for structural genomics.Nucleic Acids Res.20063490001D302D30510.1093/nar/gkj120 16381872
    [Google Scholar]
  28. LiuT LinY WenX JorissenRN Gilson MKJNar.BindingDB: A web-accessible database of experimentally determined proteinligand binding affinities.200735198201
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936258790240101062642
Loading
/content/journals/cbio/10.2174/0115748936258790240101062642
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test