Skip to content
2000
Volume 19, Issue 10
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

Microbes are intimately involved in the physiological and pathological processes of numerous diseases. There is a critical need for new drugs to combat microbe-induced diseases in clinical settings. Predicting potential microbe-drug associations is, therefore, essential for both disease treatment and novel drug discovery. However, it is costly and time-consuming to verify these relationships through traditional wet lab approaches.

Methods

We proposed an efficient computational model, STNMDA, that integrated a Structure-Aware Transformer (SAT) with a Deep Neural Network (DNN) classifier to infer latent microbe-drug associations. The STNMDA began with a “random walk with a restart” approach to construct a heterogeneous network using Gaussian kernel similarity and functional similarity measures for microorganisms and drugs. This heterogeneous network was then fed into the SAT to extract attribute features and graph structures for each drug and microbe node. Finally, the DNN classifier calculated the probability of associations between microbes and drugs.

Results

Extensive experimental results showed that STNMDA surpassed existing state-of-the-art models in performance on the MDAD and aBiofilm databases. In addition, the feasibility of STNMDA in confirming associations between microbes and drugs was demonstrated through case validations.

Conclusion

Hence, STNMDA showed promise as a valuable tool for future prediction of microbe-drug associations.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936272939231212102627
2024-02-02
2024-11-22
Loading full text...

Full text loading...

References

  1. MaP. LiC. RahamanM.M. A state-of-the-art survey of object detection techniques in microorganism image analysis: From classical methods to deep learning approaches.Artif. Intell. Rev.20235621627169810.1007/s10462‑022‑10209‑135693000
    [Google Scholar]
  2. CotterP.D. HillC. RossR.P. Bacteriocins: Developing innate immunity for food.Nat. Rev. Microbiol.200531077778810.1038/nrmicro127316205711
    [Google Scholar]
  3. FrącM. HannulaE.S. BełkaM. SallesJ.F. JedryczkaM. Soil mycobiome in sustainable agriculture.Front. Microbiol.202213103382410.3389/fmicb.2022.103382436519160
    [Google Scholar]
  4. VenturaM. O’FlahertyS. ClaessonM.J. Genome-scale analyses of health-promoting bacteria: Probiogenomics.Nat. Rev. Microbiol.200971617110.1038/nrmicro204719029955
    [Google Scholar]
  5. KauA.L. AhernP.P. GriffinN.W. GoodmanA.L. GordonJ.I. Human nutrition, the gut microbiome and the immune system.Nature2011474735132733610.1038/nature1021321677749
    [Google Scholar]
  6. SommerF. BäckhedF. The gut microbiota - masters of host development and physiology.Nat. Rev. Microbiol.201311422723810.1038/nrmicro297423435359
    [Google Scholar]
  7. SahD.K. ArjunanA. ParkS.Y. JungY.D. Bile acids and microbes in metabolic disease.World J. Gastroenterol.202228486846686610.3748/wjg.v28.i48.684636632317
    [Google Scholar]
  8. KrethJ. ZhangY. HerzbergM.C. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans.J. Bacteriol.2008190134632464010.1128/JB.00276‑0818441055
    [Google Scholar]
  9. ZhangH. DiBaiseJ.K. ZuccoloA. Human gut microbiota in obesity and after gastric bypass.Proc. Natl. Acad. Sci.200910672365237010.1073/pnas.081260010619164560
    [Google Scholar]
  10. WenL. LeyR.E. VolchkovP.Y. Innate immunity and intestinal microbiota in the development of Type 1 diabetes.Nature200845572161109111310.1038/nature0733618806780
    [Google Scholar]
  11. Sepich-PooreG.D. ZitvogelL. StraussmanR. HastyJ. WargoJ.A. KnightR. The microbiome and human cancer.Science20213716536eabc455210.1126/science.abc455233766858
    [Google Scholar]
  12. ChenJ. DouglassJ. PrasathV. The microbiome and breast cancer: A review.Breast Cancer Res. Treat.2019178349349610.1007/s10549‑019‑05407‑531456069
    [Google Scholar]
  13. ZimmermannM. Zimmermann-KogadeevaM. WegmannR. GoodmanA.L. Mapping human microbiome drug metabolism by gut bacteria and their genes.Nature2019570776246246710.1038/s41586‑019‑1291‑331158845
    [Google Scholar]
  14. RamirezM. RajaramS. SteiningerR.J. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells.Nat. Commun.2016711069010.1038/ncomms1069026891683
    [Google Scholar]
  15. MannM. KumarC. ZengW.F. StraussM.T. Artificial intelligence for proteomics and biomarker discovery.Cell Syst.202112875977010.1016/j.cels.2021.06.00634411543
    [Google Scholar]
  16. DahmenJ. KayaalpM.E. OllivierM. Artificial intelligence bot ChatGPT in medical research: The potential game changer as a double-edged sword.Knee Surg. Sports Traumatol. Arthrosc.20233141187118910.1007/s00167‑023‑07355‑636809511
    [Google Scholar]
  17. KurantD.E. Opportunities and challenges with artificial intelligence in genomics.Clin. Lab. Med.2023431879710.1016/j.cll.2022.09.00736764810
    [Google Scholar]
  18. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  19. BaekM. DiMaioF. AnishchenkoI. Accurate prediction of protein structures and interactions using a three-track neural network.Science2021373655787187610.1126/science.abj875434282049
    [Google Scholar]
  20. GuedesI.A. BarretoA.M.S. MarinhoD. New machine learning and physics-based scoring functions for drug discovery.Sci. Rep.2021111319810.1038/s41598‑021‑82410‑133542326
    [Google Scholar]
  21. VeríssimoG.C. SerafimM.S.M. KronenbergerT. FerreiraR.S. HonorioK.M. MaltarolloV.G. Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern.Expert Opin. Drug Discov.202217992994710.1080/17460441.2022.211445135983695
    [Google Scholar]
  22. SunY.Z. ZhangD.H. CaiS.B. MingZ. LiJ.Q. ChenX. MDAD: A special resource for microbe-drug associations.Front. Cell. Infect. Microbiol.2018842410.3389/fcimb.2018.0042430581775
    [Google Scholar]
  23. RajputA. ThakurA. SharmaS. KumarM. aBiofilm: A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance.Nucleic Acids Res.201846D1D894D90010.1093/nar/gkx115729156005
    [Google Scholar]
  24. AndersenP.I. IanevskiA. LysvandH. Discovery and development of safe-in-man broad-spectrum antiviral agents.Int. J. Infect. Dis.20209326827610.1016/j.ijid.2020.02.01832081774
    [Google Scholar]
  25. ZhuL. DuanG. YanC. WangJ. Prediction of microbe-drug associations based on Katz measure.2019 IEEE international conference on bioinformatics and biomedicine. 2019 Nov 18-21; San Diego, CA, USA.201910.1109/BIBM47256.2019.8983209
    [Google Scholar]
  26. ChengX. QuJ. SongS. BianZ. Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction.PeerJ202210e1384810.7717/peerj.1384835990901
    [Google Scholar]
  27. LongY. WuM. LiuY. KwohC.K. LuoJ. LiX. Ensembling graph attention networks for human microbe–drug association prediction.Bioinformatics202036S2i779i78610.1093/bioinformatics/btaa89133381844
    [Google Scholar]
  28. LongY. WuM. KwohC.K. LuoJ. LiX. Predicting human microbe–drug associations via graph convolutional network with conditional random field.Bioinformatics202036194918492710.1093/bioinformatics/btaa59832597948
    [Google Scholar]
  29. DengL. HuangY. LiuX. LiuH. Graph2MDA: A multi-modal variational graph embedding model for predicting microbe–drug associations.Bioinformatics20223841118112510.1093/bioinformatics/btab79234864873
    [Google Scholar]
  30. TanY. ZouJ. KuangL. GSAMDA: A computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder.BMC Bioinformatics202223149210.1186/s12859‑022‑05053‑736401174
    [Google Scholar]
  31. MaY. LiuQ. Generalized matrix factorization based on weighted hypergraph learning for microbe-drug association prediction.Comput. Biol. Med.202214510550310.1016/j.compbiomed.2022.10550335427986
    [Google Scholar]
  32. TianZ. YuY. FangH. XieW. GuoM. Predicting microbe–drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy.Brief. Bioinform.2023242bbac63410.1093/bib/bbac63436715986
    [Google Scholar]
  33. VaswaniA. ShazeerN. ParmarN. UszkoreitJ. JonesL. GomezA.N. Attention is all you need.Adv. Neural Inf. Process. Syst.20173059986008
    [Google Scholar]
  34. DosovitskiyA. BeyerL. KolesnikovA. An image is worth 16x16 words: Transformers for image recognition at scale.International Conference on Learning Representations
    [Google Scholar]
  35. RivesA. MeierJ. SercuT. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.Proc. Natl. Acad. Sci.202111815e201623911810.1073/pnas.201623911833876751
    [Google Scholar]
  36. OonoK. SuzukiT. Graph neural networks exponentially lose expressive power for node classification.International Conference on Learning Representations2020 Apr 26-312021
    [Google Scholar]
  37. AlonU. YahavE. On the bottleneck of graph neural networks and its practical implications.International Conference on Learning Representations2021 May 3-72021
    [Google Scholar]
  38. LiuS. WangY. DengY. Improved drug–target interaction prediction with intermolecular graph transformer.Brief. Bioinform.2022235bbac16210.1093/bib/bbac16235514186
    [Google Scholar]
  39. YuanQ. ChenS. RaoJ. ZhengS. ZhaoH. YangY. AlphaFold2-aware protein–DNA binding site prediction using graph transformer.Brief. Bioinform.2022232bbab56410.1093/bib/bbab56435039821
    [Google Scholar]
  40. HuangK. XiaoC. GlassL.M. SunJ. MolTrans: Molecular interaction transformer for drug–target interaction prediction.Bioinformatics202137683083610.1093/bioinformatics/btaa88033070179
    [Google Scholar]
  41. ZhangP. WeiZ. CheC. JinB. DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug–Target interaction prediction.Comput. Biol. Med.202214210521410.1016/j.compbiomed.2022.10521435030496
    [Google Scholar]
  42. ZhangR. WangZ. WangX. MengZ. CuiW. MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction.Brief. Bioinform.2023242bbad07910.1093/bib/bbad07936892155
    [Google Scholar]
  43. JhaK SahaS KarmakarS Prediction of protein-protein interactions using vision transformer and language model.IEEE/ACM Trans Comput Biol Bioinform 202320532152510.1109/TCBB.2023.3248797
    [Google Scholar]
  44. WangL. TanY. YangX. KuangL. PingP. Review on predicting pairwise relationships between human microbes, drugs and diseases: From biological data to computational models.Brief. Bioinform.2022233bbac08010.1093/bib/bbac08035325024
    [Google Scholar]
  45. ZhouY. WangX. YaoL. ZhuM. LDAformer: Predicting lncRNA-disease associations based on topological feature extraction and Transformer encoder.Brief. Bioinform.2022236bbac37010.1093/bib/bbac37036094081
    [Google Scholar]
  46. SchrimlL.M. MitrakaE. MunroJ. Human disease ontology 2018 update: Classification, content and workflow expansion.Nucleic Acids Res.201947D1D955D96210.1093/nar/gky103230407550
    [Google Scholar]
  47. WangJ.Z. DuZ. PayattakoolR. YuP.S. ChenC.F. A new method to measure the semantic similarity of GO terms.Bioinformatics200723101274128110.1093/bioinformatics/btm08717344234
    [Google Scholar]
  48. WangD. WangJ. LuM. SongF. CuiQ. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases.Bioinformatics201026131644165010.1093/bioinformatics/btq24120439255
    [Google Scholar]
  49. ChenD. O’BrayL. BorgwardtK. Structure-aware transformer for graph representation learning.International Conference on Machine Learning2022 June 17-23Baltimore, Maryland, United States2022
    [Google Scholar]
  50. MialonG. ChenD. SelosseM. MairalJ. Graphit: Encoding graph structure in transformers.arXiv:2106056672021
    [Google Scholar]
  51. XuK. HuW. LeskovecJ. JegelkaS. How powerful are graph neural networks?International Conference on Learning Representations2019 May 6-9New Orleans, United States2019
    [Google Scholar]
  52. ImranM. AslamM. AlsagabyS.A. Therapeutic application of carvacrol: A comprehensive review.Food Sci. Nutr.202210113544356110.1002/fsn3.299436348778
    [Google Scholar]
  53. ChurklamW. ChaturongakulS. NgamwongsatitB. AunpadR. The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage.Food Control202010810686410.1016/j.foodcont.2019.106864
    [Google Scholar]
  54. ArkaliG. AksakalM. KayaŞ.Ö. Protective effects of carvacrol against diabetes‐induced reproductive damage in male rats: Modulation of Nrf2/HO‐1 signalling pathway and inhibition of Nf‐kB‐mediated testicular apoptosis and inflammation.Andrologia2021532e1389910.1111/and.1389933242925
    [Google Scholar]
  55. ElbeH. YigitturkG. CavusogluT. BaygarT. Ozgul OnalM. OzturkF. Comparison of ultrastructural changes and the anticarcinogenic effects of thymol and carvacrol on ovarian cancer cells: Which is more effective?Ultrastruct. Pathol.202044219320210.1080/01913123.2020.174036632183603
    [Google Scholar]
  56. SaghrouchniH. BarnossiA.E. MssillouI. Potential of carvacrol as plant growth-promotor and green fungicide against fusarium wilt disease of perennial ryegrass.Front Plant Sci20231497320710.3389/fpls.2023.97320736866385
    [Google Scholar]
  57. BenbrahimK.F. ChraibiM. FarahA. ElaminO. IraquiH.M. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol.J. Adv. Pharm. Technol. Res.2020111252910.4103/japtr.JAPTR_74_1932154155
    [Google Scholar]
  58. PatelS. Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: A review.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.20153271049106410.1080/19440049.2015.104008125893282
    [Google Scholar]
  59. AbdelhamidA.G. YousefA.E. Carvacrol and thymol combat desiccation resistance mechanisms in Salmonella enterica serovar tennessee.Microorganisms20211014410.3390/microorganisms1001004435056493
    [Google Scholar]
  60. JavedH. MeeranM.F.N. JhaN.K. OjhaS. Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19.Front Plant Sci20211160133510.3389/fpls.2020.60133533664752
    [Google Scholar]
  61. WangY. HongX. LiuJ. ZhuJ. ChenJ. Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dual-species biofilms and sensitivity to carvacrol.Food Microbiol.20209110350610.1016/j.fm.2020.10350632539951
    [Google Scholar]
  62. McCurdyS. LawrenceL. QuintasM. In vitro activity of delafloxacin and microbiological response against fluoroquinolone-susceptible and nonsusceptible staphylococcus aureus isolates from two phase 3 studies of acute bacterial skin and skin structure infections.Antimicrob. Agents Chemother.2017619e00772e1710.1128/AAC.00772‑1728630189
    [Google Scholar]
  63. RehmanA. PatrickW.M. LamontI.L. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem.J. Med. Microbiol.201968111010.1099/jmm.0.00087330605076
    [Google Scholar]
  64. LiuX. XiangL. YinY. LiH. MaD. QuY. Pneumonia caused by Pseudomonas fluorescens: A case report.BMC Pulm. Med.202121121210.1186/s12890‑021‑01573‑934225696
    [Google Scholar]
  65. TrinhS.A. GavinH.E. SatchellK.J.F. Efficacy of ceftriaxone, cefepime, doxycycline, ciprofloxacin, and combination therapy for vibrio vulnificus foodborne septicemia.Antimicrob. Agents Chemother.20176112e01106e0111710.1128/AAC.01106‑1728971862
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936272939231212102627
Loading
/content/journals/cbio/10.2174/0115748936272939231212102627
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test