Skip to content
2000
Volume 19, Issue 10
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Artificial Intelligence is a field within computer science that endeavors to replicate the intricate structures and operational mechanisms inherent in the human brain. Machine learning is a subfield of artificial intelligence that focuses on developing models by analyzing training data. Deep learning is a distinct subfield within artificial intelligence, characterized by using models that depict geometric transformations across multiple layers. The deep learning has shown significant promise in various domains, including health and life sciences. In recent times, deep learning has demonstrated successful applications in drug discovery. In this self-review, we present recent methods developed with the aid of deep learning. The objective is to give a brief overview of the present cutting-edge advancements in drug discovery from our group. We have systematically discussed experimental evidence and proof of concept examples for the deep learning-based models developed, such as DeepBindBC, DeepPep, and DeepBindRG. These developments not only shed light on the existing challenges but also emphasize the achievements and prospects for future drug discovery and development progress.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936285690240101041704
2024-01-29
2024-11-22
Loading full text...

Full text loading...

References

  1. ZhuH. Big data and artificial intelligence modeling for drug discovery.Annu. Rev. Pharmacol. Toxicol.202060157358910.1146/annurev‑pharmtox‑010919‑023324 31518513
    [Google Scholar]
  2. LinX. LiX. LinX. A review on applications of computational methods in drug screening and design.Molecules2020256137510.3390/molecules25061375 32197324
    [Google Scholar]
  3. SchaduangratN. LampaS. SimeonS. GleesonM.P. SpjuthO. NantasenamatC. Towards reproducible computational drug discovery.J. Cheminform.2020121910.1186/s13321‑020‑0408‑x 33430992
    [Google Scholar]
  4. WangC.C. ZhaoY. ChenX. Drug-pathway association prediction: From experimental results to computational models.Brief. Bioinform.2021223bbaa06110.1093/bib/bbaa061 32393976
    [Google Scholar]
  5. HuangL. ZhangL. ChenX. Updated review of advances in microRNAs and complex diseases: Taxonomy, trends and challenges of computational models.Brief. Bioinform.2022235bbac35810.1093/bib/bbac358 36056743
    [Google Scholar]
  6. GhoussainiM. NelsonM.R. DunhamI. Future prospects for human genetics and genomics in drug discovery.Curr. Opin. Struct. Biol.20238010256810.1016/j.sbi.2023.102568 36963162
    [Google Scholar]
  7. SabeV.T. NtombelaT. JhambaL.A. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review.Eur. J. Med. Chem.202122411370510.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  8. WangW. YeZ. GaoH. OuyangD. Computational pharmaceutics - A new paradigm of drug delivery.J. Control. Release202133811913610.1016/j.jconrel.2021.08.030 34418520
    [Google Scholar]
  9. YuW. MacKerellA.D. Computer-aided drug design methods BT - antibiotics: Methods and protocols.Springer New York. SassP. New York, NY201785106
    [Google Scholar]
  10. LiJ. FuA. ZhangL. An overview of scoring functions used for protein-ligand interactions in molecular docking.Interdiscip. Sci.201911232032810.1007/s12539‑019‑00327‑w 30877639
    [Google Scholar]
  11. AdelusiT.I. OyedeleA.Q.K. BoyenleI.D. Molecular modeling in drug discovery.Inform Med Unlocked20222910088010.1016/j.imu.2022.100880
    [Google Scholar]
  12. GiordanoD. BiancanielloC. ArgenioM.A. FacchianoA. Drug design by pharmacophore and virtual screening approach.Pharmaceuticals202215564610.3390/ph15050646 35631472
    [Google Scholar]
  13. SchneiderP. WaltersW.P. PlowrightA.T. Rethinking drug design in the artificial intelligence era.Nat. Rev. Drug Discov.202019535336410.1038/s41573‑019‑0050‑3 31801986
    [Google Scholar]
  14. LavecchiaA. Deep learning in drug discovery: Opportunities, challenges and future prospects.Drug Discov. Today201924102017203210.1016/j.drudis.2019.07.006 31377227
    [Google Scholar]
  15. ShakerB. AhmadS. LeeJ. JungC. NaD. In silico methods and tools for drug discovery.Comput. Biol. Med.202113710485110.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  16. ZafarI AnwarS kanwal F, et al. Reviewing methods of deep learning for intelligent healthcare systems in genomics and biomedicine.Biomed. Signal Process. Control20238610526310.1016/j.bspc.2023.105263
    [Google Scholar]
  17. SreeramanS. KannanM.P. Singh KushwahR.B. Drug design and disease diagnosis: The potential of deep learning models in biology.Curr. Bioinform.202318320822010.2174/1574893618666230227105703
    [Google Scholar]
  18. TerranovaN. VenkatakrishnanK. BenincosaL.J. Application of machine learning in translational medicine: Current status and future opportunities.AAPS J.20212347410.1208/s12248‑021‑00593‑x 34008139
    [Google Scholar]
  19. Hernández MedinaR. KutuzovaS. NielsenK.N. Machine learning and deep learning applications in microbiome research.ISME Communications2022219810.1038/s43705‑022‑00182‑9 37938690
    [Google Scholar]
  20. JiangY. LuoJ. HuangD. LiuY. LiD. Machine learning advances in microbiology: A review of methods and applications.Front. Microbiol.20221392545410.3389/fmicb.2022.925454 35711777
    [Google Scholar]
  21. AhmedS.F. AlamM.S.B. HassanM. Deep learning modelling techniques: Current progress, applications, advantages, and challenges.Artif. Intell. Rev.20235611135211361710.1007/s10462‑023‑10466‑8
    [Google Scholar]
  22. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries.Mol. Divers.20222631893191310.1007/s11030‑021‑10326‑z 34686947
    [Google Scholar]
  23. MiethkeM. PieroniM. WeberT. Towards the sustainable discovery and development of new antibiotics.Nat. Rev. Chem.202151072674910.1038/s41570‑021‑00313‑1
    [Google Scholar]
  24. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  25. VamathevanJ. ClarkD. CzodrowskiP. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  26. Carracedo-ReboredoP. Liñares-BlancoJ. Rodríguez-FernándezN. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.011 34471498
    [Google Scholar]
  27. ChenH. EngkvistO. WangY. OlivecronaM. BlaschkeT. The rise of deep learning in drug discovery.Drug Discov. Today20182361241125010.1016/j.drudis.2018.01.039 29366762
    [Google Scholar]
  28. SarkarC. DasB. RawatV.S. Artificial intelligence and machine learning technology driven modern drug discovery and development.Int. J. Mol. Sci.2023243202610.3390/ijms24032026 36768346
    [Google Scholar]
  29. OdellS.G. LazoG.R. WoodhouseM.R. HaneD.L. SenT.Z. The art of curation at a biological database: Principles and application.Curr. Plant Biol.201711-1221110.1016/j.cpb.2017.11.001
    [Google Scholar]
  30. TorneL. BinnsR. Drug development and therapeutic solutions in the digital age.Drug Discov. Today201823121922192410.1016/j.drudis.2018.09.005 30227241
    [Google Scholar]
  31. GoecksJ. JaliliV. HeiserL.M. GrayJ.W. How machine learning will transform biomedicine.Cell202018119210110.1016/j.cell.2020.03.022 32243801
    [Google Scholar]
  32. ChingT. HimmelsteinD.S. Beaulieu-JonesB.K. Opportunities and obstacles for deep learning in biology and medicine.J. R. Soc. Interface2018151412017038710.1098/rsif.2017.0387 29618526
    [Google Scholar]
  33. CaoC. LiuF. TanH. Deep learning and its applications in biomedicine.Genom Proteom Bioinform2018161173210.1016/j.gpb.2017.07.003 29522900
    [Google Scholar]
  34. ZemouriR. ZerhouniN. RacoceanuD. Deep learning in the biomedical applications: Recent and future status.Appl. Sci.201998152610.3390/app9081526
    [Google Scholar]
  35. BaldiP. Deep learning in biomedical data science.Annu. Rev. Biomed. Data Sci.20181118120510.1146/annurev‑biodatasci‑080917‑013343
    [Google Scholar]
  36. YangS. ZhuF. LingX. LiuQ. ZhaoP. Intelligent health care: Applications of deep learning in computational medicine.Front. Genet.20211260747110.3389/fgene.2021.607471 33912213
    [Google Scholar]
  37. MatsuzakaY. YashiroR. Applications of deep learning for drug discovery systems with big data.BioMedInformatics20222460362410.3390/biomedinformatics2040039
    [Google Scholar]
  38. JiangD. WuZ. HsiehC.Y. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models.J. Cheminform.20211311210.1186/s13321‑020‑00479‑8 33597034
    [Google Scholar]
  39. NagS BaidyaATK MandalA Deep learning tools for advancing drug discovery and development. 3 Biotech202212110
    [Google Scholar]
  40. RuncieN.T. MeyA.S.J.S. SILVR: Guided diffusion for molecule generation.J. Chem. Inf. Model.202363195996600510.1021/acs.jcim.3c00667 37724771
    [Google Scholar]
  41. WatsonJ.L. JuergensD. BennettN.R. De novo design of protein structure and function with RFdiffusion.Nature202362079761089110010.1038/s41586‑023‑06415‑8 37433327
    [Google Scholar]
  42. KhakzadH. IgashovI. SchneuingA. GoverdeC. BronsteinM. CorreiaB. A new age in protein design empowered by deep learning.Cell Syst.2023141192593910.1016/j.cels.2023.10.006 37972559
    [Google Scholar]
  43. NiranjanV. UttarkarA. RamakrishnanA. De novo design of anti-covid drugs using machine learning-based equivariant diffusion model targeting the spike protein.Curr. Issues Mol. Biol.20234554261428410.3390/cimb45050271 37232740
    [Google Scholar]
  44. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  45. ZhangH. SaravananK.M. YangY. WeiY. YiP. ZhangJ.Z.H. Generating and screening de novo compounds against given targets using ultrafast deep learning models as core components.Brief. Bioinform.2022234bbac22610.1093/bib/bbac226 35724626
    [Google Scholar]
  46. MeyersJ. FabianB. BrownN. De novo molecular design and generative models.Drug Discov. Today202126112707271510.1016/j.drudis.2021.05.019 34082136
    [Google Scholar]
  47. LuF. LiM. MinX. LiC. ZengX. De novo generation of dual-target ligands using adversarial training and reinforcement learning.Brief. Bioinform.2021226bbab33310.1093/bib/bbab333 34410338
    [Google Scholar]
  48. ZhavoronkovA. IvanenkovY.A. AliperA. Deep learning enables rapid identification of potent DDR1 kinase inhibitors.Nat. Biotechnol.20193791038104010.1038/s41587‑019‑0224‑x 31477924
    [Google Scholar]
  49. LiY. HuJ. WangY. ZhouJ. ZhangL. LiuZ. DeepScaffold: A comprehensive tool for scaffold-based de novo drug discovery using deep learning.J. Chem. Inf. Model.2020601779110.1021/acs.jcim.9b00727 31809029
    [Google Scholar]
  50. LiY. PeiJ. LaiL. Structure-based de novo drug design using 3D deep generative models.Chem. Sci.20211241136641367510.1039/D1SC04444C 34760151
    [Google Scholar]
  51. ZhangH. SaravananK.M. YangY. Deep learning based drug screening for novel coronavirus 2019-nCov.Interdiscip. Sci.202012336837610.1007/s12539‑020‑00376‑6 32488835
    [Google Scholar]
  52. BentoA.P. HerseyA. FélixE. An open source chemical structure curation pipeline using RDKit.J. Cheminform.20201215110.1186/s13321‑020‑00456‑1 33431044
    [Google Scholar]
  53. AkbarianM. KhaniA. EghbalpourS. UverskyV.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action.Int. J. Mol. Sci.2022233144510.3390/ijms23031445 35163367
    [Google Scholar]
  54. WangL. WangN. ZhangW. Therapeutic peptides: Current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  55. AnjumK. AbbasS.Q. AkhterN. ShaguftaB.I. ShahS.A.A. HassanS.S. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms.Chem. Biol. Drug Des.2017901123010.1111/cbdd.12925 28004491
    [Google Scholar]
  56. WanF. Kontogiorgos-HeintzD. de la Fuente-NunezC. Deep generative models for peptide design.Digital Discovery20221319520810.1039/D1DD00024A 35769205
    [Google Scholar]
  57. ZhangH. SaravananK.M. WeiY. Deep learning-based bioactive therapeutic peptide generation and screening.J. Chem. Inf. Model.202363383584510.1021/acs.jcim.2c01485 36724090
    [Google Scholar]
  58. ZhengD. LiwinskiT. ElinavE. Interaction between microbiota and immunity in health and disease.Cell Res.202030649250610.1038/s41422‑020‑0332‑7 32433595
    [Google Scholar]
  59. TheilletF.X. BinolfiA. Frembgen-KesnerT. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs).Chem. Rev.2014114136661671410.1021/cr400695p 24901537
    [Google Scholar]
  60. Díaz-VillanuevaJ. Díaz-MolinaR. García-GonzálezV. Protein folding and mechanisms of proteostasis.Int. J. Mol. Sci.2015168171931723010.3390/ijms160817193 26225966
    [Google Scholar]
  61. MutharasuG. MurugesanA. KondamaniS. ThiyagarajanR. Yli-HarjaO. KandhaveluM. Signaling landscape of mitochondrial non-coding RNAs.J. Biomol. Struct. Dyn.20234121120161202510.1080/07391102.2022.2164520 36617957
    [Google Scholar]
  62. KannanM.P. SreeramanS. SomalaC.S. Advancement of targeted protein degradation strategies as therapeutics for undruggable disease targets.Future Med. Chem.2023151086788310.4155/fmc‑2023‑0072 37254917
    [Google Scholar]
  63. SaravananK.M. PonnurajK. Sequence and structural analysis of fibronectin‐binding protein reveals importance of multiple intrinsic disordered tandem repeats.J. Mol. Recognit.2019324e276810.1002/jmr.2768 30397967
    [Google Scholar]
  64. ManoharanP. SaravananK.M. Computational profiling of pore properties of outer membrane proteins.J. Biomol. Struct. Dyn.201735112372238110.1080/07391102.2016.1220329 27494049
    [Google Scholar]
  65. ZhangH. YangY. LiJ. A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro.PLOS Comput. Biol.20201612e100848910.1371/journal.pcbi.1008489 33382685
    [Google Scholar]
  66. SaravananK.M. ZhangH. HossainM.T. RezaM.S. WeiY. Deep learning-based drug screening for covid-19 and case studies.In: Methods in Pharmacology and Toxicology;202163166010.1007/7653_2020_58
    [Google Scholar]
  67. YuH. LiC. WangX. Techniques and strategies for potential protein target discovery and active pharmaceutical molecule screening in a pandemic.J. Proteome Res.202019114242425810.1021/acs.jproteome.0c00372 32957788
    [Google Scholar]
  68. ZhangH. LiJ. SaravananK.M. An integrated deep learning and molecular dynamics simulation-based screening pipeline identifies inhibitors of a new cancer drug target TIPE2.Front. Pharmacol.20211277229610.3389/fphar.2021.772296 34887765
    [Google Scholar]
  69. SaravananK.M. KannanM. MeeraP. BharathkumarN. AnandT. E3 ligases: A potential multi-drug target for different types of cancers and neurological disorders.Future Med. Chem.202214318720110.4155/fmc‑2021‑0157 35100004
    [Google Scholar]
  70. RaslanM.A. RaslanS.A. ShehataE.M. MahmoudA.S. SabriN.A. Advances in the applications of bioinformatics and chemoinformatics.Pharmaceuticals2023167105010.3390/ph16071050 37513961
    [Google Scholar]
  71. NoorF. AsifM. AshfaqU.A. QasimM. Tahir ul Qamar M. Machine learning for synergistic network pharmacology: A comprehensive overview.Brief. Bioinform.2023243bbad12010.1093/bib/bbad120 37031957
    [Google Scholar]
  72. ZhaoL. ZhangH. LiN. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  73. LöscherW. Single-target versus multi-target drugs versus combinations of drugs with multiple targets: Preclinical and clinical evidence for the treatment or prevention of epilepsy.Front. Pharmacol.20211273025710.3389/fphar.2021.730257 34776956
    [Google Scholar]
  74. PremkumarT. Sajitha LuluS. Molecular mechanisms of emerging therapeutic targets in alzheimer’s disease: A systematic review.Neurochem. J.202216444345510.1134/S1819712422040183
    [Google Scholar]
  75. UnniP.A. PillaiG.G. SajithaluluS. Biological processes and key druggable targets involved in age-associated memory loss: A systematic review.Life Sci.202127011907910.1016/j.lfs.2021.119079 33460668
    [Google Scholar]
  76. IsertC. AtzK. SchneiderG. Structure-based drug design with geometric deep learning.Curr. Opin. Struct. Biol.20237910254810.1016/j.sbi.2023.102548 36842415
    [Google Scholar]
  77. GrinterS.Z. LiangY. HuangS.Y. HyderS.M. ZouX. An inverse docking approach for identifying new potential anti-cancer targets.J. Mol. Graph. Model.201129679579910.1016/j.jmgm.2011.01.002 21315634
    [Google Scholar]
  78. XuX. HuangM. ZouX. Docking-based inverse virtual screening: methods, applications, and challenges.Biophys. Rep.20184111610.1007/s41048‑017‑0045‑8 29577065
    [Google Scholar]
  79. ZhangH. LiaoL. CaiY. HuY. WangH. IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques.Methods2019166576510.1016/j.ymeth.2019.03.012 30910562
    [Google Scholar]
  80. JaegerS. FulleS. TurkS. Mol2vec: Unsupervised machine learning approach with chemical intuition.J. Chem. Inf. Model.2018581273510.1021/acs.jcim.7b00616 29268609
    [Google Scholar]
  81. FuY. ZhaoJ. ChenZ. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein.Comput. Math. Methods Med.2018201811210.1155/2018/3502514 30627209
    [Google Scholar]
  82. KnutsonC. BonthaM. BilbreyJ.A. KumarN. Decoding the protein-ligand interactions using parallel graph neural networks.Sci. Rep.2022121762410.1038/s41598‑022‑10418‑2 35538084
    [Google Scholar]
  83. DavisF.P. SaliA. The overlap of small molecule and protein binding sites within families of protein structures.PLOS Comput. Biol.201062e100066810.1371/journal.pcbi.1000668 20140189
    [Google Scholar]
  84. AyazP. LyczekA. PaungY. Structural mechanism of a drug-binding process involving a large conformational change of the protein target.Nat. Commun.2023141188510.1038/s41467‑023‑36956‑5 37019905
    [Google Scholar]
  85. GeY. GanametK. Using sitemap to aid in the identification of cryptic binding pockets.Biophys. J.20231223142a10.1016/j.bpj.2022.11.927
    [Google Scholar]
  86. XuX. DuanR. ZouX. Template‐guided method for protein-ligand complex structure prediction: Application to CASP15 protein-ligand studies.Proteins202391121829183610.1002/prot.26535 37283068
    [Google Scholar]
  87. SadybekovA.V. KatritchV. Computational approaches streamlining drug discovery.Nature2023616795867368510.1038/s41586‑023‑05905‑z 37100941
    [Google Scholar]
  88. BorkakotiN. ThorntonJ.M. AlphaFold2 protein structure prediction: Implications for drug discovery.Curr. Opin. Struct. Biol.20237810252610.1016/j.sbi.2022.102526 36621153
    [Google Scholar]
  89. WuK. KarapetyanE. SchlossJ. VadgamaJ. WuY. Advancements in small molecule drug design: A structural perspective.Drug Discov. Today2023281010373010.1016/j.drudis.2023.103730 37536390
    [Google Scholar]
  90. KuntzI.D. BlaneyJ.M. OatleyS.J. LangridgeR. FerrinT.E. A geometric approach to macromolecule-ligand interactions.J. Mol. Biol.1982161226928810.1016/0022‑2836(82)90153‑X 7154081
    [Google Scholar]
  91. LaskowskiRA SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions.J Mol Graph1995135323330, 307-30810.1016/0263‑7855(95)00073‑98603061
    [Google Scholar]
  92. HendlichM. RippmannF. BarnickelG. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins.J. Mol. Graph. Model.1997156359363, 38910.1016/S1093‑3263(98)00002‑3 9704298
    [Google Scholar]
  93. WeiselM. ProschakE. SchneiderG. PocketPicker: Analysis of ligand binding-sites with shape descriptors.Chem. Cent. J.200711710.1186/1752‑153X‑1‑7 17880740
    [Google Scholar]
  94. SchellingM. HopfT.A. RostB. Evolutionary couplings and sequence variation effect predict protein binding sites.Proteins201886101064107410.1002/prot.25585 30020551
    [Google Scholar]
  95. CapraJ.A. LaskowskiR.A. ThorntonJ.M. SinghM. FunkhouserT.A. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.PLOS Comput. Biol.2009512e100058510.1371/journal.pcbi.1000585 19997483
    [Google Scholar]
  96. Le GuillouxV. SchmidtkeP. TufferyP. Fpocket: An open source platform for ligand pocket detection.BMC Bioinformatics200910116810.1186/1471‑2105‑10‑168 19486540
    [Google Scholar]
  97. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363-710.1093/nar/gky473 29860391
    [Google Scholar]
  98. KrivákR. HokszaD. P2Rank: Machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure.J. Cheminform.20181013910.1186/s13321‑018‑0285‑8 30109435
    [Google Scholar]
  99. Saberi FathiS. TuszynskiJ.A. A simple method for finding a protein’s ligand-binding pockets.BMC Struct. Biol.20141411810.1186/1472‑6807‑14‑18 25038637
    [Google Scholar]
  100. JiménezJ. DoerrS. Martínez-RosellG. RoseA.S. De FabritiisG. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks.Bioinformatics201733193036304210.1093/bioinformatics/btx350 28575181
    [Google Scholar]
  101. PuL. GovindarajR.G. LemoineJ.M. WuH.C. BrylinskiM. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network.PLOS Comput. Biol.2019152e100671810.1371/journal.pcbi.1006718 30716081
    [Google Scholar]
  102. UrsenbachJ. O’ConnellM.E. NeiserJ. Scoring algorithms for a computer-based cognitive screening tool: An illustrative example of overfitting machine learning approaches and the impact on estimates of classification accuracy.Psychol. Assess.201931111377138210.1037/pas0000764 31414853
    [Google Scholar]
  103. RagozaM. HochuliJ. IdroboE. SunseriJ. KoesD.R. Protein-ligand scoring with convolutional neural networks.J. Chem. Inf. Model.201757494295710.1021/acs.jcim.6b00740 28368587
    [Google Scholar]
  104. ZhangH. SaravananK.M. LinJ. DeepBindPoc: A deep learning method to rank ligand binding pockets using molecular vector representation.PeerJ20208e886410.7717/peerj.8864 32292649
    [Google Scholar]
  105. ZhangH. ZhangT. SaravananK.M. DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening.Methods202220524726210.1016/j.ymeth.2022.07.009 35878751
    [Google Scholar]
  106. FengY. ChengX. WuS. Mani SaravananK. LiuW. Hybrid drug-screening strategy identifies potential SARS-CoV-2 cell-entry inhibitors targeting human transmembrane serine protease.Struct. Chem.20223351503151510.1007/s11224‑022‑01960‑w 35571866
    [Google Scholar]
  107. JonesD. KimH. ZhangX. Improved protein-ligand binding affinity prediction with structure-based deep fusion inference.J. Chem. Inf. Model.20216141583159210.1021/acs.jcim.0c01306 33754707
    [Google Scholar]
  108. AlzubaidiL. ZhangJ. HumaidiA.J. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions.J. Big Data2021815310.1186/s40537‑021‑00444‑8 33816053
    [Google Scholar]
  109. Mamdouh FarghalyH. Abd El-HafeezT. A high-quality feature selection method based on frequent and correlated items for text classification.Soft Comput.20232716112591127410.1007/s00500‑023‑08587‑x
    [Google Scholar]
  110. TayeM.M. Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions.Computers20231259110.3390/computers12050091
    [Google Scholar]
  111. LiuT LinY WenX JorissenRN GilsonMK BindingDB BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities.Nucleic Acids Res200735DatabaseD19820110.1093/nar/gkl99917145705
    [Google Scholar]
  112. ChaiJ. ZengH. LiA. NgaiE.W.T. Deep learning in computer vision: A critical review of emerging techniques and application scenarios.Machine Learning Appl2021610013410.1016/j.mlwa.2021.100134
    [Google Scholar]
  113. LiH. TianS. LiY. Modern deep learning in bioinformatics.J. Mol. Cell Biol.2021121182382710.1093/jmcb/mjaa030 32573721
    [Google Scholar]
  114. ReddyA.S. AmarnathH.S.D. BapiR.S. SastryG.M. SastryG.N. Protein ligand interaction database (PLID).Comput. Biol. Chem.200832538739010.1016/j.compbiolchem.2008.03.017 18514578
    [Google Scholar]
  115. Stepniewska-DziubinskaM.M. ZielenkiewiczP. SiedleckiP. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction.Bioinformatics201834213666367410.1093/bioinformatics/bty374 29757353
    [Google Scholar]
  116. KanakalaG.C. AggarwalR. NayarD. PriyakumarU.D. Latent biases in machine learning models for predicting binding affinities using popular data sets.ACS Omega2023822389239710.1021/acsomega.2c06781 36687059
    [Google Scholar]
  117. JiangX. YanJ. ZhaoY. Characterizing functional brain networks via spatio-temporal attention 4D convolutional neural networks (STA-4DCNNs).Neural Netw.20231589911010.1016/j.neunet.2022.11.004 36446159
    [Google Scholar]
  118. ZhangH. LiaoL. SaravananK.M. YinP. WeiY. DeepBindRG: A deep learning based method for estimating effective protein-ligand affinity.PeerJ20197e736210.7717/peerj.7362 31380152
    [Google Scholar]
  119. WangS. LiuD. DingM. SE-OnionNet: A convolution neural network for protein-ligand binding affinity prediction.Front. Genet.20211160782410.3389/fgene.2020.607824 33737946
    [Google Scholar]
  120. ZhangH. ZhangT. SaravananK.M. A novel virtual drug screening pipeline with deep-leaning as core component identifies inhibitor of pancreatic alpha-amylase Proceedings of the Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine BIBM202110411110.1109/BIBM52615.2021.9669306
    [Google Scholar]
  121. KojimaR. IshidaS. OhtaM. IwataH. HonmaT. OkunoY. kGCN: A graph-based deep learning framework for chemical structures.J. Cheminform.20201213210.1186/s13321‑020‑00435‑6 33430993
    [Google Scholar]
  122. TemmlV. KutilZ. Structure-based molecular modeling in SAR analysis and lead optimization.Comput. Struct. Biotechnol. J.2021191431144410.1016/j.csbj.2021.02.018 33777339
    [Google Scholar]
  123. RensiS. AltmanR.B. Flexible analog search with kernel PCA embedded molecule vectors.Comput. Struct. Biotechnol. J.20171532032710.1016/j.csbj.2017.03.003 28458783
    [Google Scholar]
  124. AhmedZ. MohamedK. ZeeshanS. DongX. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine.Database20202020baaa01010.1093/database/baaa010 32185396
    [Google Scholar]
  125. NguyenT. LeH. QuinnT.P. NguyenT. LeT.D. VenkateshS. GraphDTA: predicting drug-target binding affinity with graph neural networks.Bioinformatics20213781140114710.1093/bioinformatics/btaa921 33119053
    [Google Scholar]
  126. MoesserM.A. KleinD. BoylesF. DeaneC.M. BaxterA. MorrisG.M. Protein-ligand interaction graphs: Learning from ligand-shaped 3D interaction graphs to improve binding affinity prediction.BioRxiv20222022.03.04.48301210.1101/2022.03.04.483012
    [Google Scholar]
  127. ZhangH. SaravananK.M. ZhangJ.Z.H. DeepBindGCN: Integrating molecular vector representation with graph convolutional neural networks for protein-ligand interaction prediction.Molecules20232812469110.3390/molecules28124691
    [Google Scholar]
  128. BaranwalM. MagnerA. SaldingerJ. Struct2Graph: A graph attention network for structure based predictions of protein-protein interactions.BMC Bioinformatics202223137010.1186/s12859‑022‑04910‑9 36088285
    [Google Scholar]
  129. WangR. FangX. LuY. YangC.Y. WangS. The PDBbind database: Methodologies and updates.J. Med. Chem.200548124111411910.1021/jm048957q 15943484
    [Google Scholar]
  130. LiuZ. LiY. HanL. PDB-wide collection of binding data: Current status of the PDBbind database.Bioinformatics201531340541210.1093/bioinformatics/btu626 25301850
    [Google Scholar]
  131. YangC. ChenE.A. ZhangY. Protein-ligand docking in the machine-learning era.Molecules20222714456810.3390/molecules27144568 35889440
    [Google Scholar]
  132. MysingerM.M. CarchiaM. IrwinJ.J. ShoichetB.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking.J. Med. Chem.201255146582659410.1021/jm300687e 22716043
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936285690240101041704
Loading
/content/journals/cbio/10.2174/0115748936285690240101041704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test