Skip to content
2000
Volume 10, Issue 1
  • ISSN: 1573-4072
  • E-ISSN:

Abstract

Amino terminal peptides of the general form Gly-Gly-His have been used to introduce single sites of metal binding and redox activity into a wide range of biomolecules to create bioactive compounds and conjugates capable of substrate oxidation. We report here that Gly-Gly-His-like peptides linked in a tandem fashion can also be generated leading to multi-metal binding arrays. While metal binding by the native Gly-Gly-His motif (typically to Cu2+, Ni2+, or Co2+) requires a terminal peptide amine ligand, previous work has demonstrated that an ornithine (Orn) residue can be substituted for the terminal Gly residue to allow solid-phase peptide synthesis to continue via the side chain N-δ. This strategy thus frees the Orn residue N-α for metal binding and permits placement of a Gly-Gly-His-like metal binding domain at any location within a linear, synthetic peptide chain. As we show here, this strategy also permits the assembly of tandem arrays of metal binding units in linear peptides of the form: NH2-Gly-Gly-His-[( δ)-Orn-Gly-His]n-(δ)-Orn-Gly-His- CONH2 (where n = 0, 1, and 2). Metal binding titrations of these tandem arrays monitored by UV-vis and ESI-MS indicated that they bind Cu2+, Ni2+, or Co2+ at each available metal binding site. Further, it was found that these systems retained their ability to modify DNA oxidatively and to an extent greater than their parent M(II)•Gly-Gly-His. These findings suggest that the tandem array metallopeptides described here may function with increased efficiency as “next generation” appendages in the design of bioactive compounds and conjugates.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/157340721001140724150901
2014-03-01
2024-11-15
Loading full text...

Full text loading...

/content/journals/cbc/10.2174/157340721001140724150901
Loading

  • Article Type:
    Research Article
Keyword(s): DNA cleavage; Gly-Gly-His; metal binding peptide; metallopeptide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test