Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

The use of plant extracts in the biosynthesis of nanoparticles has garnered attention in recent years due to the rapid, ecological, and economical production protocol. The current study aimed to biosynthesize silver nanoparticles (AgNPs) of L. extract.

Methods

These nanoparticles were characterized by UV-Vis, Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) to determine their size and composition. The bioactivity was assessed by the determination of their antimicrobial effect using the well diffusion method and their cytotoxicity by hemolysis method.

Results and Discussion

The results showed that AgNPs have been successfully synthesized and exhibit a surface plasmon resonance spectrum with an absorption maximum at 420 nm. FTIR affirmed the role of L. as a reducing and capping agent of silver ions and XRD revealed their crystalline nature. Interestingly, the synthesized AgNPs exhibited significant antimicrobial effects particularly against and with inhibition zones of 20.5 and 19 mm, respectively. The cytotoxicity test confirmed the non-toxic characteristics of the synthesized AgNPs.

Conclusion

The bio-ingredients present in the plant extract were effective for the synthesis of Ag nanoparticles with significant biological efficacy.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072361896250114094955
2025-01-20
2026-02-15
Loading full text...

Full text loading...

References

  1. SalemS.S. HammadE.N. MohamedA.A. DougdougE.W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications.Biointerface Res. Appl. Chem.20221314110.33263/BRIAC131.041
    [Google Scholar]
  2. KalishwaralalK. DeepakV. RamkumarpandianS. NellaiahH. SangiliyandiG. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis.Mater. Lett.200862294411441310.1016/j.matlet.2008.06.051
    [Google Scholar]
  3. ZahirA.A. RahumanA.A. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata.Vet. Parasitol.20121873-451152010.1016/j.vetpar.2012.02.001 22429701
    [Google Scholar]
  4. LeiC. SunY. TsangD.C.W. LinD. Environmental transformations and ecological effects of iron-based nanoparticles.Environ. Pollut.2018232103010.1016/j.envpol.2017.09.052 28966028
    [Google Scholar]
  5. VillagránZ. EsparzaY.A.L.M. CarrilesÁ.V.C.A. JaraV.S.J.M. GómezA.R.J.M. VigoO.A.E.F. LafitteR.R.E. BarajasR.R.N. LeónD.B.I. EsquiviasT.M.F. Plant-based extracts as reducing, capping, and stabilizing agents for the green synthesis of inorganic nanoparticles.Resources20241367010.3390/resources13060070
    [Google Scholar]
  6. JeongS.H. YeoS.Y. YiS.C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers.J. Mater. Sci.200540205407541110.1007/s10853‑005‑4339‑8
    [Google Scholar]
  7. LiuY. LiF. GuoZ. XiaoY. ZhangY. SunX. ZheT. CaoY. WangL. LuQ. WangJ. Silver nanoparticle-embedded] hydrogel as a photothermal platform for combating bacterial infections.Chem. Eng. J.202038212299010.1016/j.cej.2019.122990
    [Google Scholar]
  8. SalomoniR. LéoP. RodriguesM. Antibacterial activity of silver nanoparticles (AgNPs) in Staphylococcus aureus and cytotoxicity effect in mammalian cells.SubStance20151718
    [Google Scholar]
  9. RaiM. YadavA. GadeA. Silver nanoparticles as a new generation of antimicrobials.Biotechnol. Adv.2009271768310.1016/j.biotechadv.2008.09.002 18854209
    [Google Scholar]
  10. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  11. AnanthiV. PrakashS.G. RasuM.K. GangadeviK. BoobalanT. RajaR. AnandK. SudhakarM. ChuturgoonA. ArunA. Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates.J. Photochem. Photobiol. B201818623224210.1016/j.jphotobiol.2018.07.021 30092559
    [Google Scholar]
  12. BoatengJ CatanzanoO. Silver and silver nanoparticle‐based antimicrobial dressingstherapeutic dressings and wound healing applications202015718410.1002/9781119433316.ch8
    [Google Scholar]
  13. KimK.J. SungW.S. SuhB.K. MoonS.K. ChoiJ.S. KimJ.G. LeeD.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans.Biometals200922223524210.1007/s10534‑008‑9159‑2 18769871
    [Google Scholar]
  14. WinterC.A. RisleyE.A. NussG.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs.Exp. Biol. Med.1962111354454710.3181/00379727‑111‑27849 14001233
    [Google Scholar]
  15. NadwornyP.L. WangJ. TredgetE.E. BurrellR.E. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model.Nanomedicine20084324125110.1016/j.nano.2008.04.006 18550449
    [Google Scholar]
  16. GangulyB. VermaA.K. SinghB. DasA.K. RastogiS.K. SeidaviA. LazariD. GiannenasI. Green synthesis of silver nanoparticles with extract of Indian ginseng and in vitro inhibitory activity against infectious bursal disease virus.Poultry202321122210.3390/poultry2010002
    [Google Scholar]
  17. AllahverdiyevA. AbamorE.Ş. BagirovaM. UstundagC.B. KayaC. KayaF. RafailovichM. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light.Int. J. Nanomedicine201162705271410.2147/IJN.S23883 22114501
    [Google Scholar]
  18. KuppusamyP. IchwanS.J.A. ZikriA.P.N.H. SuriyahW.H. SoundharrajanI. GovindanN. ManiamG.P. YusoffM.M. In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells.Biol. Trace Elem. Res.2016173229730510.1007/s12011‑016‑0666‑7 26961292
    [Google Scholar]
  19. DasG. PatraJ.K. BasavegowdaN. VishnuprasadC.N. ShinH.S. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.).Lam. Int. J. Nanomedicine2019144741475410.2147/IJN.S210517 31456635
    [Google Scholar]
  20. LogeswariP. SilambarasanS. AbrahamJ. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property.J. Saudi Chem. Soc.201519331131710.1016/j.jscs.2012.04.007
    [Google Scholar]
  21. Abu-IzneidT. RaufA. SaleemM. MansourN. AbdelhadyM.I.S. IbrahimM.M. PatelS. Urease inhibitory potential of extracts and active phytochemicals of Hypochaeris radicata (Asteraceae).Nat. Prod. Res.202034455355710.1080/14786419.2018.1489387 30317858
    [Google Scholar]
  22. SenguttuvanJ. PaulsamyS. KarthikaK. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb,] Hypochaeris radicata L. for in vitro antioxidant activities.Asian Pac. J. Trop. Biomed.20144S1S359S36710.12980/APJTB.4.2014C1030 25183112
    [Google Scholar]
  23. SenguttuvanJ. SubramaniamP. HPTLC Fingerprints of various secondary metabolites in the traditional medicinal herb] Hypochaeris radicata L.J. Bot.2016201615429625
    [Google Scholar]
  24. MollickM.M.R. RanaD. DashS.K. ChattopadhyayS. BhowmickB. MaityD. MondalD. PattanayakS. RoyS. ChakrabortyM. Studies on green synthesized silver nanoparticles using Abelmoscus esculentus (L.) pulp extract having anticancer in vitro and antimicrobial applications.Arab. J. Chem.201912825722584
    [Google Scholar]
  25. LópezC.S.E. GomesD. EsteruelasG. BonillaL. MachadoE.L.A.L. GalindoR. CanoA. EspinaM. EttchetoM. CaminsA. SilvaA.M. DurazzoA. SantiniA. GarciaM.L. SoutoE.B. Metal-based nanoparticles as antimicrobial agents: An overview.Nanomaterials202010229210.3390/nano10020292 32050443
    [Google Scholar]
  26. VidhuV.K. AromalS.A. PhilipD. Green synthesis of silver nanoparticles using Macrotyloma uniflorum.Spectrochim. Acta A Mol. Biomol. Spectrosc.201183139239710.1016/j.saa.2011.08.051 21920808
    [Google Scholar]
  27. ChiejinaN.V. UkehJ.A. Antimicrobial properties and phytochemical analysis of methanolic extracts of Aframomum melegueta and Zingiber officinale on fungal diseases of tomato fruit.J. Natural Sci. Res.2012261014
    [Google Scholar]
  28. PaganoM. FaggioC. The use of erythrocyte fragility to assess xenobiotic cytotoxicity.Cell Biochem. Funct.201533635135510.1002/cbf.3135 26399850
    [Google Scholar]
  29. BhuyarP. RahimM.H.A. SundararajuS. RamarajR. ManiamG.P. GovindanN. Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria.Beni. Suef Univ. J. Basic Appl. Sci.2020911510.1186/s43088‑019‑0031‑y
    [Google Scholar]
  30. GudikandulaK. MaringantiC.S. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties.J. Exp. Nanosci.201611971472110.1080/17458080.2016.1139196
    [Google Scholar]
  31. OvesM. AslamM. RaufM.A. QayyumS. QariH.A. KhanM.S. AlamM.Z. TabrezS. PugazhendhiA. IsmailI.M.I. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera.Mater. Sci. Eng. C20188942944310.1016/j.msec.2018.03.035 29752116
    [Google Scholar]
  32. MaliszewskaI. SzewczykK. WaszakK. Biological synthesis of silver nanoparticles.J. Phys. Conf. Ser.2009146101202510.1088/1742‑6596/146/1/012025
    [Google Scholar]
  33. MohammedA. QahtaniA.A. MutairiA.A. ShamriA.B. AabedK. Antibacterial and cytotoxic potential of biosynthesized silver nanoparticles by some plant extracts.Nanomaterials20188638210.3390/nano8060382 29849012
    [Google Scholar]
  34. KrishnarajC. JaganE.G. RajasekarS. SelvakumarP. KalaichelvanP.T. MohanN. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens.Colloids Surf. B Biointerfaces2010761505610.1016/j.colsurfb.2009.10.008 19896347
    [Google Scholar]
  35. AnandalakshmiK. VenugobalJ. RamasamyV. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity.Appl. Nanosci.20166339940810.1007/s13204‑015‑0449‑z
    [Google Scholar]
  36. CherrakS.A. SoulimaneH.M.N. BerroukecheF. BensenaneB. CherbonnelA. MerzoukH. ElhabiriM. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation.PLoS One20161110e016557510.1371/journal.pone.0165575 27788249
    [Google Scholar]
  37. CoatesJ. Interpretation of infrared spectra, a practical approach.Encycl. Analy. Chem.2000121081510837
    [Google Scholar]
  38. LiS. ShenY. XieA. YuX. QiuL. ZhangL. ZhangQ. Green synthesis of silver nanoparticles using Capsicum annuum L. extract.Green Chem.20079885210.1039/b615357g
    [Google Scholar]
  39. HayatJ. AkodadM. MoumenA. BaghourM. SkalliA. EzrariS. BelmalhaS. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco.Heliyon2020611e0560910.1016/j.heliyon.2020.e05609 33305038
    [Google Scholar]
  40. JiY. YangX. JiZ. ZhuL. MaN. ChenD. JiaX. TangJ. CaoY. DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components.ACS Omega20205158572857810.1021/acsomega.9b04421 32337419
    [Google Scholar]
  41. IbrahimH.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms.J. Rad. Res. Appl. Sci.20158326527510.1016/j.jrras.2015.01.007
    [Google Scholar]
  42. SenguptaP. DasA. KhanamJ. BiswasA. MathewJ. MondalP.K. RomeroE.L. ThomasS. TrottaF. GhosalK. Evaluating the potential of ethyl cellulose/eudragit-based griseofulvin loaded nanosponge matrix for topical antifungal drug delivery in a sustained release pattern.Int. J. Biol. Macromol.2024276Pt 213395310.1016/j.ijbiomac.2024.133953 39029839
    [Google Scholar]
  43. HongX. WenJ. XiongX. HuY. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.Environ. Sci. Pollut. Res. Int.20162354489449710.1007/s11356‑015‑5668‑z 26511259
    [Google Scholar]
  44. AbbaszadeganA. GhahramaniY. GholamiA. HemmateenejadB. DorostkarS. NabavizadehM. SharghiH. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against Gram‐positive and Gram‐negative bacteria: A preliminary study.J. Nanomater.20152015172065410.1155/2015/720654
    [Google Scholar]
  45. FajarM. EndarkoE. RubiyantoA. MalekN. HadibarataT. SyafiuddinA. A green deposition method of silver nanoparticles on textiles and their antifungal activity.Biointerface Res. Appl. Chem.20191014902490710.33263/BRIAC101.902907
    [Google Scholar]
  46. SenguptaP. DasA. DattaD. DewanjeeS. KhanamJ. GhosalK. Novel super porous nanosponge-based drug delivery system synthesized from cyclodextrin/polymer for anti-fungal medication.React. Funct. Polym.202419610583010.1016/j.reactfunctpolym.2024.105830
    [Google Scholar]
  47. RezaeiR. SafaeiM. MozaffariH. MohammadiM. Antifungal mechanisms of silver nanoparticles in medical mycology: A review.Front. Microbiol.20221387516810.3389/fmicb.2022.875168
    [Google Scholar]
  48. KhanM. KhanM. AnsariS.A. ChoM.H. Antifungal activities of metal nanoparticles: A mechanistic view.Mater. Lett.2015158273010.1016/j.matlet.2015.06.064
    [Google Scholar]
  49. Pedrozo-PeñafielM. Gutierrez-BeleñoL. MendozaC.A. Freire-JúniorF.L. LimaM.A. TeixeiraT. AucélioR.Q. In vitro and ex vivo biocompatibility, biomolecular interactions, and characterization of graphene quantum dots and its glutathione-modified variant for qualitative cell imaging.ACS Omega20251016161941620610.1021/acsomega.4c10014
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072361896250114094955
Loading
/content/journals/cbc/10.2174/0115734072361896250114094955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test