Skip to content
2000
image of Biosynthesis and Characterization of Silver Nanoparticles using Hypochaeris radicata L. Extract and their Bioactivity

Abstract

Background

The use of plant extracts in the biosynthesis of nanoparticles has garnered attention in recent years due to the rapid, ecological, and economical production protocol. The current study aimed to biosynthesize silver nanoparticles (AgNPs) of L. extract.

Methods

These nanoparticles were characterized by UV-Vis, Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) to determine their size and composition. The bioactivity was assessed by the determination of their antimicrobial effect using the well diffusion method and their cytotoxicity by hemolysis method.

Results

The results showed that AgNPs have been successfully synthesized and exhibit a surface plasmon resonance spectrum with an absorption maximum at 420 nm. FTIR affirmed the role of L. as a reducing and capping agent of silver ions and XRD revealed their crystalline nature. Interestingly, the synthesized AgNPs exhibited significant antimicrobial effects particularly against and with inhibition zones of 20.5 and 19 mm, respectively. The cytotoxicity test confirmed the non-toxic characteristics of the synthesized AgNPs.

Conclusion

The bio-ingredients present in the plant extract were effective for the synthesis of Ag nanoparticles with significant biological efficacy.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072361896250114094955
2025-01-20
2025-06-29
Loading full text...

Full text loading...

References

  1. Salem S.S. Hammad E.N. Mohamed A.A. Dougdoug E.W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022 13 1 41 10.33263/BRIAC131.041
    [Google Scholar]
  2. Kalishwaralal K. Deepak V. Ramkumarpandian S. Nellaiah H. Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 2008 62 29 4411 4413 10.1016/j.matlet.2008.06.051
    [Google Scholar]
  3. Zahir A.A. Rahuman A.A. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet. Parasitol. 2012 187 3-4 511 520 10.1016/j.vetpar.2012.02.001 22429701
    [Google Scholar]
  4. Lei C. Sun Y. Tsang D.C.W. Lin D. Environmental transformations and ecological effects of iron-based nanoparticles. Environ. Pollut. 2018 232 10 30 10.1016/j.envpol.2017.09.052 28966028
    [Google Scholar]
  5. Villagrán Z. Esparza Y.A.L.M. Carriles Á.V.C.A. Jara V.S.J.M. Gómez A.R.J.M. Vigo O.A.E.F. Lafitte R.R.E. Barajas R.R.N. León D.B.I. Esquivias T.M.F. Plant-based extracts as reducing, capping, and stabilizing agents for the green synthesis of inorganic nanoparticles. Resources 2024 13 6 70 10.3390/resources13060070
    [Google Scholar]
  6. Jeong S.H. Yeo S.Y. Yi S.C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005 40 20 5407 5411 10.1007/s10853‑005‑4339‑8
    [Google Scholar]
  7. Liu Y. Li F. Guo Z. Xiao Y. Zhang Y. Sun X. Zhe T. Cao Y. Wang L. Lu Q. Wang J. Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections. Chem. Eng. J. 2020 382 122990 10.1016/j.cej.2019.122990
    [Google Scholar]
  8. Salomoni R Léo P Rodrigues M Antibacterial activity of silver nanoparticles (AgNPs) in Staphylococcus aureus and cytotoxicity effect in mammalian cells. Substance 2015 17 18
    [Google Scholar]
  9. Rai M. Yadav A. Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009 27 1 76 83 10.1016/j.biotechadv.2008.09.002 18854209
    [Google Scholar]
  10. Ahmed S. Ahmad M. Swami B.L. Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016 7 1 17 28 10.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  11. Ananthi V. Prakash S.G. Rasu M.K. Gangadevi K. Boobalan T. Raja R. Anand K. Sudhakar M. Chuturgoon A. Arun A. Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates. J. Photochem. Photobiol. B 2018 186 232 242 10.1016/j.jphotobiol.2018.07.021 30092559
    [Google Scholar]
  12. Boateng J Catanzano O Silver and silver nanoparticle‐based antimicrobial dressings Therapeutic Dressings and Wound Healing Applications 2020 157 184 10.1002/9781119433316.ch8
    [Google Scholar]
  13. Kim K.J. Sung W.S. Suh B.K. Moon S.K. Choi J.S. Kim J.G. Lee D.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 2009 22 2 235 242 10.1007/s10534‑008‑9159‑2 18769871
    [Google Scholar]
  14. Winter C.A. Risley E.A. Nuss G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med. 1962 111 3 544 547 10.3181/00379727‑111‑27849 14001233
    [Google Scholar]
  15. Nadworny P.L. Wang J. Tredget E.E. Burrell R.E. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 2008 4 3 241 251 10.1016/j.nano.2008.04.006 18550449
    [Google Scholar]
  16. Ganguly B. Verma A.K. Singh B. Das A.K. Rastogi S.K. Seidavi A. Lazari D. Giannenas I. Green synthesis of silver nanoparticles with extract of indian ginseng and in vitro inhibitory activity against infectious bursal disease virus. Poultry 2023 2 1 12 22 10.3390/poultry2010002
    [Google Scholar]
  17. Allahverdiyev A. Abamor E.Ş. Bagirova M. Ustundag C.B. Kaya C. Kaya F. Rafailovich M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomedicine 2011 6 2705 2714 10.2147/IJN.S23883 22114501
    [Google Scholar]
  18. Kuppusamy P. Ichwan S.J.A. Zikri A.P.N.H. Suriyah W.H. Soundharrajan I. Govindan N. Maniam G.P. Yusoff M.M. In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biol. Trace Elem. Res. 2016 173 2 297 305 10.1007/s12011‑016‑0666‑7 26961292
    [Google Scholar]
  19. Das G. Patra J.K. Basavegowda N. Vishnuprasad C.N. Shin H.S. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam. Int. J. Nanomedicine 2019 14 4741 4754 10.2147/IJN.S210517 31456635
    [Google Scholar]
  20. Logeswari P. Silambarasan S. Abraham J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J. Saudi Chem. Soc. 2015 19 3 311 317 10.1016/j.jscs.2012.04.007
    [Google Scholar]
  21. -Izneid A.T. Rauf A. Saleem M. Mansour N. Abdelhady M.I.S. Ibrahim M.M. Patel S. Urease inhibitory potential of extracts and active phytochemicals of Hypochaeris radicata (Asteraceae). Nat. Prod. Res. 2020 34 4 553 557 10.1080/14786419.2018.1489387 30317858
    [Google Scholar]
  22. Senguttuvan J. Paulsamy S. Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac. J. Trop. Biomed. 2014 4 S1 S359 S367 10.12980/APJTB.4.2014C1030 25183112
    [Google Scholar]
  23. Senguttuvan J. Subramaniam P. HPTLC Fingerprints of various secondary metabolites in the traditional medicinal herb Hypochaeris radicata L. J. Bot. 2016 2016 1 5429625
    [Google Scholar]
  24. Mollick M M R Rana D Dash S K Chattopadhyay S Bhowmick B Maity D Mondal D Pattanayak S Roy S Chakraborty M. Studies on green synthesized silver nanoparticles 2015
    [Google Scholar]
  25. López C.S.E. Gomes D. Esteruelas G. Bonilla L. Machado E.L.A.L. Galindo R. Cano A. Espina M. Ettcheto M. Camins A. Silva A.M. Durazzo A. Santini A. Garcia M.L. Souto E.B. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 2020 10 2 292 10.3390/nano10020292 32050443
    [Google Scholar]
  26. Vidhu V.K. Aromal S.A. Philip D. Green synthesis of silver nanoparticles using macrotyloma uniflorum. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011 83 1 392 397 10.1016/j.saa.2011.08.051 21920808
    [Google Scholar]
  27. Chiejina N V Ukeh J A Antimicrobial properties and phytochemical analysis of methanolic extracts of aframomum melegueta and zingiber officinale on fungal diseases of tomato fruit. J. Natural Sci. Res. 2012 2 6 10 14
    [Google Scholar]
  28. Pagano M. Faggio C. The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem. Funct. 2015 33 6 351 355 10.1002/cbf.3135 26399850
    [Google Scholar]
  29. Bhuyar P. Rahim M.H.A. Sundararaju S. Ramaraj R. Maniam G.P. Govindan N. Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni. Suef Univ. J. Basic Appl. Sci. 2020 9 1 15 10.1186/s43088‑019‑0031‑y
    [Google Scholar]
  30. Gudikandula K. Maringanti C.S. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J. Exp. Nanosci. 2016 11 9 714 721 10.1080/17458080.2016.1139196
    [Google Scholar]
  31. Oves M. Aslam M. Rauf M.A. Qayyum S. Qari H.A. Khan M.S. Alam M.Z. Tabrez S. Pugazhendhi A. Ismail I.M.I. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater. Sci. Eng. C 2018 89 429 443 10.1016/j.msec.2018.03.035 29752116
    [Google Scholar]
  32. Maliszewska I. Szewczyk K. Waszak K. Biological synthesis of silver nanoparticles. J. Phys. Conf. Ser. 2009 146 10.1088/17426596/146/1/012025
    [Google Scholar]
  33. Mohammed A. Qahtani A.A. Mutairi A.A. Shamri A.B. Aabed K. Antibacterial and cytotoxic potential of biosynthesized silver nanoparticles by some plant extracts. Nanomaterials 2018 8 6 382 10.3390/nano8060382 29849012
    [Google Scholar]
  34. Krishnaraj C. Jagan E.G. Rajasekar S. Selvakumar P. Kalaichelvan P.T. Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 2010 76 1 50 56 10.1016/j.colsurfb.2009.10.008 19896347
    [Google Scholar]
  35. Anandalakshmi K. Venugobal J. Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2016 6 3 399 408 10.1007/s13204‑015‑0449‑z
    [Google Scholar]
  36. Cherrak S.A. Soulimane H.M.N. Berroukeche F. Bensenane B. Cherbonnel A. Merzouk H. Elhabiri M. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLoS One 2016 11 10 e0165575 10.1371/journal.pone.0165575 27788249
    [Google Scholar]
  37. Coates J. Interpretation of infrared spectra, a practical approach. Encycl. Analy. Chem. 2000 12 10815 10837
    [Google Scholar]
  38. Li S. Shen Y. Xie A. Yu X. Qiu L. Zhang L. Zhang Q. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 2007 9 8 852 10.1039/b615357g
    [Google Scholar]
  39. Hayat J. Akodad M. Moumen A. Baghour M. Skalli A. Ezrari S. Belmalha S. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. Heliyon 2020 6 11 e05609 10.1016/j.heliyon.2020.e05609 33305038
    [Google Scholar]
  40. Ji Y. Yang X. Ji Z. Zhu L. Ma N. Chen D. Jia X. Tang J. Cao Y. DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega 2020 5 15 8572 8578 10.1021/acsomega.9b04421 32337419
    [Google Scholar]
  41. Ibrahim H M M Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Rad. Res. Appl. Sci. 2015 8 3 265 275 10.1016/j.jrras.2015.01.007
    [Google Scholar]
  42. Sengupta P. Das A. Khanam J. Biswas A. Mathew J. Mondal P.K. Romero E.L. Thomas S. Trotta F. Ghosal K. Evaluating the potential of ethyl cellulose/eudragit-based griseofulvin loaded nanosponge matrix for topical antifungal drug delivery in a sustained release pattern. Int. J. Biol. Macromol. 2024 a 276 Pt 2 133953 10.1016/j.ijbiomac.2024.133953 39029839
    [Google Scholar]
  43. Hong X. Wen J. Xiong X. Hu Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ. Sci. Pollut. Res. Int. 2016 23 5 4489 4497 10.1007/s11356‑015‑5668‑z 26511259
    [Google Scholar]
  44. Abbaszadegan A. Ghahramani Y. Gholami A. Hemmateenejad B. Dorostkar S. Nabavizadeh M. Sharghi H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram‐positive and gram‐negative bacteria: A preliminary study. J. Nanomater. 2015 2015 1 720654 10.1155/2015/720654
    [Google Scholar]
  45. Fajar M. Endarko E. Rubiyanto A. Malek N. Hadibarata T. Syafiuddin A. A green deposition method of silver nanoparticles on textiles and their antifungal activity. Biointerface Res. Appl. Chem. 2019 10 1 4902 4907 10.33263/BRIAC101.902907
    [Google Scholar]
  46. Sengupta P. Das A. Datta D. Dewanjee S. Khanam J. Ghosal K. Novel super porous nanosponge-based drug delivery system synthesized from cyclodextrin/polymer for anti-fungal medication. React. Funct. Polym. 2024 b 196 105830 10.1016/j.reactfunctpolym.2024.105830
    [Google Scholar]
  47. Rezaei R. Safaei M. Mozaffari H. Mohammadi M. Antifungal mechanisms of silver nanoparticles in medical mycology: A review. Front. Microbiol. 2022 13 875168 10.3389/fmicb.2022.875168
    [Google Scholar]
  48. Khan M. Khan M. Ansari S.A. Cho M.H. Antifungal activities of metal nanoparticles: A mechanistic view. Mater. Lett. 2015 158 27 30 10.1016/j.matlet.2015.06.064
    [Google Scholar]
  49. Ralph A Ferreira S Ferreira V Lima E Vasconcellos M Evaluation of cytotoxity of synthetic naphthoquinones in an artemia franciscana and erythrocytes model. 2009
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072361896250114094955
Loading
/content/journals/cbc/10.2174/0115734072361896250114094955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test