Skip to content
2000
image of Biologically Active Components of Seven Saussurea Species and their Osteogenic and Hematopoietic Activity in Experimental Osteomyelitis

Abstract

Background

Plant extracts containing polysaccharides, flavonoids, and chelated calcium compounds are effective for the complex therapy of osteomyelitis. In this study, the content of target components in the extracts of seven DC species was studied, and their osteogenic and hematopoietic activities in model osteomyelitis were investigated.

Methods

The content of chelidonic acid by high-performance liquid chromatography, flavonoids by spectrophotometric method, polysaccharides by gravimetric method, and calcium by automatic analyzer in extracts was determined. Biological experiments were carried out on rats using the model of experimental osteomyelitis.

Results

The largest amount of calcium (3-4 mmol/l) in , , and , chelidonic acid (122 mg/g) in , and flavonoids (63-74 mg/g) and polysaccharides (218-251 mg/g) in and extracts was found. In the model osteomyelitis, the studied extracts stimulated bone marrow hematopoiesis, and the total number of bone marrow cells increased after treatment with extract by 50% and with and extracts by 28% compared to the control. After treatment with extracts, the intensity of inflammation in the bone tissue decreased, and regenerative processes intensified. Moreover, the area of mature bone tissue increased by 72% after treatment with and extracts, indicating the successful completion of the bone regeneration process.

Conclusion

Plants of the genus (S. DC, S. (Poir.) DC, S. Ledeb., S. Adams., and S. (L.) DC) showed osteogenic and hematopoietic efficacy in the osteomyelitis model of rats. Extracts and biologically active components of these plants can expand the arsenal of sources for the complex therapy of osteomyelitis.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072357086250303055104
2025-03-12
2025-04-23
Loading full text...

Full text loading...

References

  1. Lew D.P. Waldvogel F.A. Osteomyelitis. Lancet 2004 364 9431 369 379 10.1016/S0140‑6736(04)16727‑5 15276398
    [Google Scholar]
  2. Maffulli N. Papalia R. Zampogna B. Torre G. Albo E. Denaro V. The management of osteomyelitis in the adult. Surgeon 2016 14 6 345 360 10.1016/j.surge.2015.12.005 26805473
    [Google Scholar]
  3. Kavanagh N. Ryan E.J. Widaa A. Sexton G. Fennell J. O’Rourke S. Cahill K.C. Kearney C.J. O’Brien F.J. Kerrigan S.W. Staphylococcal osteomyelitis: Disease progression, treatment challenges, and future directions. Clin. Microbiol. Rev. 2018 31 2 e00084-17 10.1128/CMR.00084‑17 29444953
    [Google Scholar]
  4. Conway J.D. Hambardzumyan V. Patel N.G. Giacobbe S.D. Gesheff M.G. Immunological evaluation of patients with orthopedic infections: Taking the Cierny–Mader classification to the next level. J. Bone Jt. Infect. 2021 6 9 433 441 10.5194/jbji‑6‑433‑2021 34909368
    [Google Scholar]
  5. Wang X. Zhang M. Zhu T. Wei Q. Liu G. Ding J. Flourishing antibacterial strategies for osteomyelitis therapy. Adv. Sci. (Weinh.) 2023 10 11 2206154 10.1002/advs.202206154 36717275
    [Google Scholar]
  6. Dym H. Zeidan J. Microbiology of acute and chronic osteomyelitis and antibiotic treatment. Dent. Clin. North Am. 2017 61 2 271 282 10.1016/j.cden.2016.12.001 28317566
    [Google Scholar]
  7. Han H. Yan H. King K.Y. Broad-spectrum antibiotics deplete bone marrow regulatory T cells. Cells 2021 10 2 277 10.3390/cells10020277 33573218
    [Google Scholar]
  8. He Z.F. Wu X.A. Wang Y.P. Severe bone marrow suppression and hepatic dysfunction caused by piperacillin/tazobactam. Scand. J. Infect. Dis. 2013 45 11 885 887 10.3109/00365548.2013.805426 23826789
    [Google Scholar]
  9. Josefsdottir K.S. Baldridge M.T. Kadmon C.S. King K.Y. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood 2017 129 6 729 739 10.1182/blood‑2016‑03‑708594 27879260
    [Google Scholar]
  10. Yuan Y. Li H. Song Y. Zhang D. Wang Z. Yi X. Qi B. Zhang X. Jiang P. Yu A. Drug‐free triboelectric immunotherapy” activating immunity for osteomyelitis treatment and recurrence prevention. Adv. Mater. 2024 36 44 2408473 10.1002/adma.202408473 39212208
    [Google Scholar]
  11. Costa C.R.R. Amorim B.R. de Magalhães P. De Luca Canto G. Acevedo A.C. Guerra E.N.S. Effects of plants on osteogenic differentiation and mineralization of periodontal ligament cells: A systematic review. Phytother. Res. 2016 30 4 519 531 10.1002/ptr.5568 26822584
    [Google Scholar]
  12. Kim S.Y. An S.Y. Lee J.S. Heo J.S. Zanthoxylum schinifolium enhances the osteogenic potential of periodontal ligament stem cells. in vitro Cell. Dev. Biol. Anim. 2015 51 2 165 173 10.1007/s11626‑014‑9824‑4 25303944
    [Google Scholar]
  13. Shou D. Zhang Y. Shen L. Zheng R. Huang X. Mao Z. Yu Z. Wang N. Zhu Y. Flavonoids of Herba Epimedii enhances bone repair in a rabbit model of chronic osteomyelitis during post-infection treatment and stimulates osteoblast proliferation in vitro. Phytother. Res. 2017 31 2 330 339 10.1002/ptr.5755 27896877
    [Google Scholar]
  14. Sharma C. Dixit M. Singh R. Agrawal M. Mansoori M.N. Kureel J. Singh D. Narender T. Arya K.R. Potential osteogenic activity of ethanolic extract and oxoflavidin isolated from Pholidota articulata Lindley. J. Ethnopharmacol. 2015 170 57 65 10.1016/j.jep.2015.04.045 25959442
    [Google Scholar]
  15. Yamaguchi M. The botanical molecule p-hydroxycinnamic acid as a new osteogenic agent: Insight into the treatment of cancer bone metastases. Mol. Cell. Biochem. 2016 421 1-2 193 203 10.1007/s11010‑016‑2803‑1 27573001
    [Google Scholar]
  16. Lin Y.T. Peng S.W. Imtiyaz Z. Ho C.W. Chiou W.F. Lee M.H. In vivo and in vitro evaluation of the osteogenic potential of Davallia mariesii T. Moore ex Baker. J. Ethnopharmacol. 2021 264 113126 10.1016/j.jep.2020.113126 32763416
    [Google Scholar]
  17. Maurya R. Yadav D.K. Singh G. Bhargavan B. Narayana Murthy P.S. Sahai M. Singh M.M. Osteogenic activity of constituents from Butea monosperma. Bioorg. Med. Chem. Lett. 2009 19 3 610 613 10.1016/j.bmcl.2008.12.064 19124244
    [Google Scholar]
  18. Liu J. Li T. Chen H. Yu Q. Yan C. Structural characterization and osteogenic activity in vitro of novel polysaccharides from the rhizome of Polygonatum sibiricum. Food Funct. 2021 12 14 6626 6636 10.1039/D1FO00938A 34105561
    [Google Scholar]
  19. Du L. Nong M.N. Zhao J.M. Peng X.M. Zong S.H. Zeng G.F. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway. Sci. Rep. 2016 6 1 32261 10.1038/srep32261 27554324
    [Google Scholar]
  20. Niu W. Wang Y. Liu Y. Zhang B. Liu M. Luo Y. Zhao P. Zhang Y. Wu H. Ma L. Li Z. Starch-derived absorbable polysaccharide hemostat enhances bone healing via BMP-2 protein. Acta Histochem. 2017 119 3 257 263 10.1016/j.acthis.2017.01.011 28168995
    [Google Scholar]
  21. Jeong Y.T. Baek S.H. Jeong S.C. Yoon Y.D. Kim O.H. Oh B.C. Jung J.W. Kim J.H. Osteoprotective effects of polysaccharide-enriched Hizikia fusiforme processing by product in vitro and in vivo models. J. Med. Food 2016 19 8 805 814 10.1089/jmf.2015.3646 27458685
    [Google Scholar]
  22. Gao L. Tang Z. Li T. Wang J. Myricetin exerts anti-biofilm activity and attenuates osteomyelitis by inhibiting the TLR2/MAPK pathway in experimental mice. Microb. Pathog. 2023 182 106165 10.1016/j.micpath.2023.106165 37224983
    [Google Scholar]
  23. Kong X. Wang F. Niu Y. Wu X. Pan Y. A comparative study on the effect of promoting the osteogenic function of osteoblasts using isoflavones from R adix A stragalus. Phytother. Res. 2018 32 1 115 124 10.1002/ptr.5955 29044703
    [Google Scholar]
  24. Wu T. Shu T. Kang L. Wu J. Xing J. Lu Z. Chen S. Lv J. Icaritin, a novel plant-derived osteoinductive agent, enhances the osteogenic differentiation of human bone marrow- and human adipose tissue-derived mesenchymal stem cells. Int. J. Mol. Med. 2017 39 4 984 992 10.3892/ijmm.2017.2906 28260001
    [Google Scholar]
  25. Mao Y.W. Lin R.D. Hung H.C. Lee M.H. Stimulation of osteogenic activity in human osteoblast cells by edible Uraria crinita. J. Agric. Food Chem. 2014 62 24 5581 5588 10.1021/jf5012177 24785825
    [Google Scholar]
  26. Guo Y. Wang X. Gao J. Simultaneous preparation and comparison of the osteogenic effects of epimedins A – C and Icariin from Epimedium brevicornu. Chem. Biodivers. 2018 15 4 e1700578 10.1002/cbdv.201700578 29451707
    [Google Scholar]
  27. Zhang Y. Yan M. Yu Q. Yang P. Zhang H. Sun Y. Zhang Z. Gao Y. Puerarin prevents LPS-Induced osteoclast formation and bone loss via inhibition of akt activation. Biol. Pharm. Bull. 2016 39 12 2028 2035 10.1248/bpb.b16‑00522 27904045
    [Google Scholar]
  28. Yan X. Chinese patent medicine for treating bone injury and its formulation. CN patent 1739738 2006
  29. Xu M. Guo Q. Wang S. Wang N. Wei L. Wang J. Anti-rheumatoid arthritic effects of Saussurea involucrata on type II collagen-induced arthritis in rats. Food Funct. 2016 7 2 763 770 10.1039/C5FO00603A 26508519
    [Google Scholar]
  30. Yi T. Zhao Z.Z. Yu Z.L. Chen H.B. Comparison of the anti-inflammatory and anti-nociceptive effects of three medicinal plants known as “Snow Lotus” herb in traditional Uighur and Tibetan medicines. J. Ethnopharmacol. 2010 128 2 405 411 10.1016/j.jep.2010.01.037 20083181
    [Google Scholar]
  31. Pandey M.M. Rastogi S. Rawat A.K.S. Saussurea Costus: Botanical, chemical and pharmacological review of an ayurvedic medicinal plant. J. Ethnopharmacol. 2007 110 3 379 390 10.1016/j.jep.2006.12.033 17306480
    [Google Scholar]
  32. Chik W.I. Zhu L. Fan L.L. Yi T. Zhu G.Y. Gou X.J. Tang Y.N. Xu J. Yeung W.P. Zhao Z.Z. Yu Z.L. Chen H.B. Saussurea involucrata: A review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine. J. Ethnopharmacol. 2015 172 44 60 10.1016/j.jep.2015.06.033 26113182
    [Google Scholar]
  33. Yi T. Chen H.B. Zhao Z.Z. Jiang Z.H. Cai S.Q. Wang T.M. Identification and determination of the major constituents in the traditional Uighur medicinal plant Saussurea involucrata by LC-DAD-MS. Chromatographia 2009 69 5-6 537 542 10.1365/s10337‑008‑0923‑9
    [Google Scholar]
  34. Chen R.D. Liu X. Zou J.H. Yang L. Dai J.G. Regulation of syringin, chlorogenic acid and 1,5-dicaffeoylquinic acid biosynthesis in cell suspension cultures of Saussurea involucrata. China J. Chin. Mater. Med. 2014 39 12 2275 2280 25244758
    [Google Scholar]
  35. Jing L.L. Fan X.F. Fan P.C. He L. Jia Z.P. 5,6-Dihydroxy-7,8-dimethoxyflavone. Acta Crystallogr. Sect. E Struct. Rep. Online 2013 69 7 o1096 10.1107/S1600536813014451 24046658
    [Google Scholar]
  36. Iwashina T. Smirnov S.V. Damdinsuren O. Kondo K. Saussurea species from the Altai Mountains and adjacent area, and their flavonoid diversity. Bull. Natl Mus Nat Sci, Ser. B. 2010 36 141 154
    [Google Scholar]
  37. Yao L. Zhao Q. Xiao J. Sun J. Yuan X. Zhao B. Su H. Niu S. Composition and antioxidant activity of the polysaccharides from cultivated Saussurea involucrata. Int. J. Biol. Macromol. 2012 50 3 849 853 10.1016/j.ijbiomac.2011.11.012 22120502
    [Google Scholar]
  38. Gong X. Zhang Z. Shi X. Zhu Y. Ali F. Dong Y. Zhang F. Zhang B. Structural elucidation and anti-psoriasis activity of a novel polysaccharide from Saussurea Costus. Carbohydr. Polym. 2024 333 333 121963 10.1016/j.carbpol.2024.121963 38494220
    [Google Scholar]
  39. Kumari R. Negi M. Thakur P. Mahajan H. Raina K. Sharma R. Singh R. Anand V. Ming L.C. Goh K.W. Calina D. Sharifi-Rad J. Chaudhary A. Saussurea Costus (Falc.) Lipsch.: A comprehensive review of its pharmacology, phytochemicals, ethnobotanical uses, and therapeutic potential. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 3 1505 1524 10.1007/s00210‑023‑02694‑0 37755516
    [Google Scholar]
  40. Elnour A.A.M. Abdurahman N.H. Current and potential future biological uses of Saussurea Costus (Falc.) Lipsch: A comprehensive review. Heliyon 2024 10 18 e37790 10.1016/j.heliyon.2024.e37790 39323795
    [Google Scholar]
  41. Idriss H. Siddig B. González-Maldonado P. Elkhair H.M. Alakhras A.I. Abdallah E.M. Elzupir A.O. Sotelo P.H. Inhibitory activity of Saussurea Costus extract against bacteria, candida, herpes, and SARS-CoV-2. Plants 2023 12 3 460 10.3390/plants12030460 36771546
    [Google Scholar]
  42. Avdeeva E. Shults E. Rybalova T. Reshetov Y. Porokhova E. Sukhodolo I. Litvinova L. Shupletsova V. Khaziakhmatova O. Khlusov I. Guryev A. Belousov M. Chelidonic acid and its derivatives from Saussurea Controversa: Isolation, structural elucidation and influence on the osteogenic differentiation of multipotent mesenchymal stromal cells in vitro. Biomolecules 2019 9 5 189 10.3390/biom9050189 31100934
    [Google Scholar]
  43. Khlusov I. Avdeeva E. Shupletsova V. Khaziakhmatova O. Litvinova L. Porokhova E. Reshetov Y. Zvereva I. Mushtovatova L. Karpova M. Guryev A. Sukhodolo I. Belousov M. Comparative in vitro evaluation of antibacterial and osteogenic activity of polysaccharide and flavonoid fractions isolated from the leaves of Saussurea controversa. Molecules 2019 24 20 3680 10.3390/molecules24203680 31614835
    [Google Scholar]
  44. Avdeeva E.Yu. Igidov N.M. Gein V.L. Krivoshchekov S.V. Khlusov I.A. Belousov M.V. Dozmorova N.V. Luzhanin V.G. Synthesis and quality control of calcium chelidonate substance with osteogenic activity. Drug Dev. Regist. 2023 4 1 1678 10.33380/2305‑2066‑2023‑12‑4(1)‑1678
    [Google Scholar]
  45. Avdeeva E.Y. Krasnov E.A. Semenov A.A. Flavonoid content in the aerial part of Saussurea controversa DC (Asteraceae). Pharm. Chem. J. 2017 51 2 124 125 10.1007/s11094‑017‑1569‑4
    [Google Scholar]
  46. Bubenchikova V.N. Stepnova I.V. Shkabunova M.S. Development of a procedure for quantification of polysaccharides in hawkweed oxtongue (Picris hieracioides) herb Farmatsiya (Pharmacy). 2018 67 5 19 23 10.29296/25419218‑2018‑05‑04
    [Google Scholar]
  47. Winters R. Tatum S.A. III Chronic nonbacterial osteomyelitis. Curr. Opin. Otolaryngol. Head Neck Surg. 2014 22 4 332 335 10.1097/MOO.0000000000000071 24979367
    [Google Scholar]
  48. Fantoni M. Taccari F. Giovannenze F. Systemic antibiotic treatment of chronic osteomyelitis in adults. Eur. Rev. Med. Pharmacol. Sci. 2019 23 2 Suppl. 258 270 10.26355/eurrev_201904_17500 30977893
    [Google Scholar]
  49. Lima A.L.L. Oliveira P.R. Carvalho V.C. Cimerman S. Savio E. Recommendations for the treatment of osteomyelitis. Braz. J. Infect. Dis. 2014 18 5 526 534 10.1016/j.bjid.2013.12.005 24698709
    [Google Scholar]
  50. Hauser S.P. Udupa K.B. Lipschitz D.A. Effects of ceftazidime, a betalactam antibiotic, on murine haemopoiesis in vitro. Br. J. Haematol. 1994 86 4 733 739 10.1111/j.1365‑2141.1994.tb04822.x 7918065
    [Google Scholar]
  51. Olaison L. Belin L. Hogevik H. Alestig K. Incidence of β-lactam-induced delayed hypersensitivity and neutropenia during treatment of infective endocarditis. Arch. Intern. Med. 1999 159 6 607 615 10.1001/archinte.159.6.607 10090118
    [Google Scholar]
  52. Ribeiro D. Proenca C. Rocha S. Lima J. Carvalho F. Fernandes E. Freitas M. Immunomodulatory effects of flavonoids in the prophylaxis and treatment of inflammatory bowel diseases: A comprehensive review. Curr. Med Chem. 2018 25 28 3374 10.2174/0929867325666180214121734
    [Google Scholar]
  53. Ramberg J.E. Nelson E.D. Sinnott R.A. Immunomodulatory dietary polysaccharides: A systematic review of the literature. Nutr. J. 2010 9 1 54 10.1186/1475‑2891‑9‑54 21087484
    [Google Scholar]
  54. Hosseinzade A. Sadeghi O. Naghdipour Biregani A. Soukhtehzari S. Brandt G.S. Esmaillzadeh A. Immunomodulatory effects of flavonoids: Possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front. Immunol. 2019 10 51 10.3389/fimmu.2019.00051 30766532
    [Google Scholar]
  55. Chen H. Sun J. Liu J. Gou Y. Zhang X. Wu X. Sun R. Tang S. Kan J. Qian C. Zhang N. Jin C. Structural characterization and anti-inflammatory activity of alkali-soluble polysaccharides from purple sweet potato. Int. J. Biol. Macromol. 2019 131 484 494 10.1016/j.ijbiomac.2019.03.126 30904524
    [Google Scholar]
  56. Wang M. Li C. Li J. Hu W. Yu A. Tang H. Li J. Kuang H. Zhang H. Extraction, purification, structural characteristics, biological activity and application of polysaccharides from Portulaca oleracea L. (Purslane): A review. Molecules 2023 28 12 4813 10.3390/molecules28124813 37375369
    [Google Scholar]
  57. Al-Khayri J.M. Sahana G.R. Nagella P. Joseph B.V. Alessa F.M. Al-Mssallem M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022 27 9 2901 10.3390/molecules27092901 35566252
    [Google Scholar]
  58. Serafini M. Peluso I. Raguzzini A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010 69 3 273 278 10.1017/S002966511000162X 20569521
    [Google Scholar]
  59. Farhadi F. Khameneh B. Iranshahi M. Iranshahy M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019 33 1 13 40 10.1002/ptr.6208 30346068
    [Google Scholar]
  60. Wang H.B. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale. Carbohydr. Polym. 2014 103 140 142 10.1016/j.carbpol.2013.12.029 24528711
    [Google Scholar]
  61. Yu W. Chen H. Xiang Z. He N. Preparation of polysaccharides from Ramulus mori, and their antioxidant, anti-inflammatory and antibacterial activities. Molecules 2019 24 5 856 10.3390/molecules24050856 30823408
    [Google Scholar]
  62. Xie Y. Yang W. Tang F. Chen X. Ren L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2014 22 1 132 149 10.2174/0929867321666140916113443 25245513
    [Google Scholar]
  63. Aoshima Y. Hasegawa Y. Hasegawa S. Nagasaka A. Kimura T. Hashimoto S. Torii Y. Tsukagoshi N. Isolation of GnafC, a polysaccharide constituent of Gnaphalium affine, and synergistic effects of GnafC and ascorbate on the phenotypic expression of osteoblastic MC3T3-E1 cells. Biosci. Biotechnol. Biochem. 2003 67 10 2068 2074 10.1271/bbb.67.2068 14586092
    [Google Scholar]
  64. Yu Y. Shen M. Song Q. Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018 183 183 91 101 10.1016/j.carbpol.2017.12.009 29352896
    [Google Scholar]
  65. Shi S. Li J. Zhao X. Liu Q. Song S.J. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry 2021 191 112895 10.1016/j.phytochem.2021.112895 34403885
    [Google Scholar]
  66. Rahman M.M. Rahaman M.S. Islam M.R. Rahman F. Mithi F.M. Alqahtani T. Almikhlafi M.A. Alghamdi S.Q. Alruwaili A.S. Hossain M.S. Ahmed M. Das R. Emran T.B. Uddin M.S. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021 27 1 233 10.3390/molecules27010233 35011465
    [Google Scholar]
  67. Avdeeva E. Shults E. Skorokhodova M. Reshetov Y. Porokhova E. Sukhodolo I. Krasnov E. Belousov M. Flavonol Glycosides from Saussurea controversa and Their Efficiency in Experimental Osteomyelitis. Planta Medica International Open 2018 5 1 e24 e29 10.1055/s‑0044‑100799
    [Google Scholar]
  68. Lanham-New S.A. Importance of calcium, vitamin D and vitamin K for osteoporosis prevention and treatment. Proc. Nutr. Soc. 2008 67 2 163 176 10.1017/S0029665108007003 18412990
    [Google Scholar]
  69. a Paredes-Gamero E.J. Barbosa C.M. Ferreira A.T. Calcium signaling as a regulator of hematopoiesis. Front Biosci 2012 4 4 1375 10.2741/e467
    [Google Scholar]
  70. b Wen C. Kang H. Shih Y.R.. Hwang Y. Varghese S. In vivo comparison of biomineralized scaffold-directed osteogenic differentiation of human embryonic and mesenchymal stem cells. Drug. Deliv. Transl. Res. 2008 6 2 121 131 10.1007/s13346‑015‑0242‑2
    [Google Scholar]
  71. Avdeeva E. Porokhova E. Khlusov I. Rybalova T. Shults E. Litvinova L. Shupletsova V. Khaziakhmatova O. Sukhodolo I. Belousov M. Calcium Chelidonate: Semi-Synthesis, Crystallography, and Osteoinductive Activity in vitro and In vivo. Pharmaceuticals (Basel) 2021 14 6 579 10.3390/ph14060579 34204329
    [Google Scholar]
  72. Morrison S.J. Scadden D.T. The bone marrow niche for haematopoietic stem cells. Nature 2014 505 7483 327 334 10.1038/nature12984 24429631
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072357086250303055104
Loading
/content/journals/cbc/10.2174/0115734072357086250303055104
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: polysaccharides ; Chelidonic acid ; osteomyelitis ; flavonoids ; calcium ; Saussurea DC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test