Skip to content
2000
image of Advances in Phytosome Technology for Targeted Cancer Therapy

Abstract

Introduction

Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Among all approaches, phyto-phospholipid complexes (named phytosomes) have appeared to be a great method to overcome the problems. With the new developments in drug delivery technologies, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered phytosomes to treat cancer.

Objective

In the present review, various drugs targeted by phytosomes to treat varied forms of cancer, like breast cancer, pancreatic cancer, lung cancer, colon cancer, prostate cancer, etc, are discussed.

Methods

In this review, recent literature covering phytosomes to treat various forms of cancer, patent applications, and clinical trials involving phytosomes employed to cure mainly cancer are covered.

Results

Phytosomes have proved their potential to cure cancer. They increase the bioavailability of the drug by site-specific drug delivery and can reduce the side effects/- toxicity associated with anticancer drugs and also sustain the release of drugs.

Conclusion

The potential of phytosomes to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072354014250108100013
2025-01-30
2025-04-23
Loading full text...

Full text loading...

References

  1. Murugesan M.P. Ratnam M.V. Mengitsu Y. Kandasamy K. Evaluation of anti-cancer activity of phytosomes formulated from aloe vera extract. Mater. Today Proc. 2020 42 2 631 636
    [Google Scholar]
  2. Wong K.E. Ngai S.C. Chan K.G. Lee L.H. Goh B.H. Chuah L.H. Curcumin nanoformulations for colorectal cancer: A review. Front. Pharmacol. 2019 10 152 10.3389/fphar.2019.00152 30890933
    [Google Scholar]
  3. Babazadeh A. Zeinali M. Hamishehkar H. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr. Drug Targets 2018 19 2 170 180 10.2174/1389450118666170508095250 28482783
    [Google Scholar]
  4. Tao F. Zhang Y. Zhang Z. The role of herbal bioactive components in mitochondria function and cancer therapy. Evid. Based Complement. Alternat. Med. 2019 2019 1 12 10.1155/2019/3868354 31308852
    [Google Scholar]
  5. Mateti T. Aswath S. Vatti A.K. Kamath A. Laha A. A review on allopathic and herbal nanofibrous drug delivery vehicles for cancer treatments. Biotechnol. Rep. (Amst.) 2021 31 e00663 10.1016/j.btre.2021.e00663 34557390
    [Google Scholar]
  6. Pilmeijer A. Cancer & ayurveda as a complementary treatment. Int J Complement Altern Med 2017 6 5 00202
    [Google Scholar]
  7. Yap K.M. Sekar M. Fuloria S. Wu Y.S. Gan S.H. Mat Rani N.N.I. Subramaniyan V. Kokare C. Lum P.T. Begum M.Y. Mani S. Meenakshi D.U. Sathasivam K.V. Fuloria N.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: a comprehensive review of literature. Int. J. Nanomedicine 2021 16 7891 7941 10.2147/IJN.S328135 34880614
    [Google Scholar]
  8. Lu M. Qiu Q. Luo X. Liu X. Sun J. Wang C. Lin X. Deng Y. Song Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci. 2019 14 3 265 274 10.1016/j.ajps.2018.05.011 32104457
    [Google Scholar]
  9. Bhattacharya S. Phytosomes: The new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int. J. Health Res. 2009 2 3 225 232 10.4314/ijhr.v2i3.47905
    [Google Scholar]
  10. Nagar G. Phytosomes: A novel drug delivery for herbal extracts. Int. J. Pharm. Sci. Res. 2019 10 10 1 8
    [Google Scholar]
  11. Kumar D. Vats N. Saroha K. Rana A.C. Saneja A. Panda A. Lichtfouse E. Phytosomes as Emerging Nanotechnology for Herbal Drug Delivery. Sustainable Agriculture Reviews 43. Sustainable Agriculture Reviews. Springer Cham 2020 Vol. 43 217 237 10.1007/978‑3‑030‑41838‑0_7
    [Google Scholar]
  12. Kidd P. Head K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (Siliphos). Altern. Med. Rev. 2005 10 3 193 203 16164374
    [Google Scholar]
  13. Franco P. Bombardelli E. Complex compounds of bioflavonoids with phospholipids, their preparation and uses and pharmaceutical and cosmetic compositions containing them. Patent US Patent No-EPO. 1998:275005, 1998
  14. Dewan N. Dasgupta D. Pandit S. Ahmed P. Review on-herbosomes, A new arena for drug delivery. J. Pharmacogn. Phytochem. 2016 5 4 104
    [Google Scholar]
  15. Jain N. Gupta B.P. Thakur N. Phytosome: A novel drug delivery system for herbal medicine. Int. J. Pharm. Sci. Drug Res. 2010 2 4 224 228
    [Google Scholar]
  16. Barani M. Sangiovanni E. Angarano M. Rajizadeh M.A. Mehrabani M. Piazza S. Gangadharappa H.V. Pardakhty A. Mehrbani M. Dell’Agli M. Nematollahi M.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 6983 7022 10.2147/IJN.S318416 34703224
    [Google Scholar]
  17. Bombardelli E. Curri S.B. Della Loggia R. Complexes between phospholipids and vegetal derivatives of biological interest. Fitoterpia. 1989 60 1 9
    [Google Scholar]
  18. Pu Y. Zhang X. Zhang Q. Wang B. Chen Y. Zang C. Wang Y. Dong T. Zhang T. 20(S)-protopanaxadiol phospholipid complex: Process optimization, characterization, in vitro dissolution and molecular docking studies. Molecules 2016 21 10 1396 10.3390/molecules21101396 27775578
    [Google Scholar]
  19. Semalty A. Semalty M. Rawat M.S.M. Franceschi F. Supramolecular phospholipids–polyphenolics interactions: The Phytosome® strategy to improve the bioavailability of phytochemicals. Fitoterapia 2010 81 5 306 314 10.1016/j.fitote.2009.11.001 19919847
    [Google Scholar]
  20. Tripathy S. Patel D.K. Barob L. Naira S.K. A review on phytosomes, their characterization, advancement & potential for transdermal application. J. Drug Deliv. Ther. 2013 3 3 147 152 10.22270/jddt.v3i3.508
    [Google Scholar]
  21. Patel J. Patel R. Khambholja K. Patel N. An overview of phytosomes as an advanced herbal drug delivery system. Asian J Pharm Sci. 2009 4 6 363 371
    [Google Scholar]
  22. Moscarella S. Giusti A. Marra F. Marena C. Lampertico M. Relli P. Gentilini P. Buzzelli G. Therapeutic and antilipoperoxidant effects of silybin-phosphatidylcholine complex in chronic liver disease: Preliminary results. Curr. Ther. Res. Clin. Exp. 1993 53 1 98 102 10.1016/S0011‑393X(05)80160‑2
    [Google Scholar]
  23. Gaikwad A.R. Ahire K.D. Gosavi A.A. Salunkhe K.S. Khalkar A. Phytosome as a novel drug delivery system for bioavailability enhancement of phytoconstituents and its applications: A review. J. Drug Deliv. Ther. 2021 11 3 138 152 10.22270/jddt.v11i3.4847
    [Google Scholar]
  24. Agrawal V.K. Gupta A. Chaturvedi S. Improvement in bioavailability of class-III drug: Phytolipid delivery system. Int. J. Pharm. Pharm. Sci. 2012 4 1 37 42
    [Google Scholar]
  25. Jain N.K., Ed Controlled and novel drug delivery. CBS Publishers & Distributors New Delhi 1997 236 237
    [Google Scholar]
  26. El-Sherbiny I.M. El-Baz N.M. Hefnawy A. Potential of nanotechnology in nutraceuticals delivery for the prevention and treatment of cancer. Nanotechnol Agri-Food Ind. 2016 4 117 152 10.1016/B978‑0‑12‑804305‑9.00004‑X
    [Google Scholar]
  27. Khanzode M.B. Kajale A.D. Channawar M.A. Gawande S.R. Review on phytosomes: A novel drug delivery system. GSC Biological and Pharmaceutical Sciences 2020 13 1 203 211 10.30574/gscbps.2020.13.1.0345
    [Google Scholar]
  28. Gaikwad S.S. Morade Y.Y. Kothule A.M. Kshirsagar S.J. Laddha U.D. Salunkhe K.S. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook. Heliyon 2023 9 6 e16561 10.1016/j.heliyon.2023.e16561 37260890
    [Google Scholar]
  29. Amit P.Y.S.T. Tanwar Y.S. Rakesh S. Poojan P. Phytosome: Phytolipid drug delivery system for improving bioavailability of herbal drug. J Pharm Sci Biosci Res. 2013 3 2 51 57
    [Google Scholar]
  30. Khan J. Alexander A. Ajazuddin Saraf S. Saraf S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J. Control. Release 2013 168 1 50 60 10.1016/j.jconrel.2013.02.025 23474031
    [Google Scholar]
  31. Kumar S. Baldi A. Sharma D.K. Phytosomes: A modernistic approach for novel herbal drug delivery-enhancing bioavailability and revealing endless frontier of phytopharmaceuticals. J. Dev. Drugs 2019 9 1 8
    [Google Scholar]
  32. Sharma S. Shukla P. Misra A. Mishra P.R. Interfacial and colloidal properties of emulsified systems: pharmaceutical and biological perspective. Pharmaceutical and biological perspective. Colloid and interface science in pharmaceutical research and development. Elsevier Inc. 2014 149 172 10.1016/B978‑0‑444‑62614‑1.00008‑9
    [Google Scholar]
  33. Elsana H. Olusanya T.O.B. Carr-wilkinson J. Darby S. Faheem A. Elkordy A.A. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci. Rep. 2019 9 1 15120 10.1038/s41598‑019‑51065‑4 31641141
    [Google Scholar]
  34. Al-Rabia M.W. Alhakamy N.A. Rizg W.Y. Alghaith A.F. Ahmed O.A.A. Fahmy U.A. Boosting curcumin activity against human prostatic cancer PC3 cells by utilizing scorpion venom conjugated phytosomes as promising functionalized nanovesicles. Drug Deliv. 2022 29 1 807 820 10.1080/10717544.2022.2048133 35266425
    [Google Scholar]
  35. Ghazi A.M. Al-Bayati M.A. Anti-proliferative of the phytosome propolis, phytosome lycopene and synergistic effect on the benign prostatic hyperplasia cells in-vitro. Plant Arch. 2020 20 6579 6589
    [Google Scholar]
  36. Flaig T.W. Su L.J. Harrison G. Agarwal R. Glodé L.M. Silibinin synergizes with mitoxantrone to inhibit cell growth and induce apoptosis in human prostate cancer cells. Int. J. Cancer 2007 120 9 2028 2033 10.1002/ijc.22465 17230508
    [Google Scholar]
  37. Saxena S. Szabo C.I. Chopin S. Barjhoux L. Sinilnikova O. Lenoir G. Goldgar D.E. Bhatanager D. BRCA1 and BRCA2 in Indian breast cancer patients. Hum. Mutat. 2002 20 6 473 474 10.1002/humu.9082 12442273
    [Google Scholar]
  38. Talaat S.M. Elnaggar Y.S.R. Gowayed M.A. El-Ganainy S.O. Allam M. Abdallah O.Y. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: In vitro appraisal and in vivo antitumoral studies. Drug Deliv. Transl. Res. 2024 14 2 433 454 10.1007/s13346‑023‑01409‑5 37644299
    [Google Scholar]
  39. Alhakamy N.A. Fahmy U.A. Eldin S.M.B. Ahmed O.A.A. Aldawsari H.M. Okbazghi S.Z. Alfaleh M.A. Abdulaal W.H. Alamoudi A.J. Mady F.M. Scorpion venom-functionalized quercetin phytosomes for breast cancer management: In vitro response surface optimization and anticancer activity against MCF-7 cells. Polymers 2021 14 1 93 10.3390/polym14010093 35012116
    [Google Scholar]
  40. Wanjiru J. Gathirwa J. Sauli E. Swai H.S. Formulation, optimization, and evaluation of Moringa oleifera leaf polyphenol-loaded phytosome delivery system against breast cancer cell lines. Molecules 2022 27 14 4430 10.3390/molecules27144430 35889305
    [Google Scholar]
  41. Sharma S. Roy R. Shrivastava B. Antiproliferative effect of phytosome complex of methanolic extact of Terminalia arjuna bark on human breast cancer cell lines (MCF-7). Int. J. Drug Dev. Res. 2015 7 1 173 182
    [Google Scholar]
  42. Kudatarkar N. Jalalpure S. Kurangi B. Formulation and characterization of chrysin loaded phytosomes and its cytotoxic effect against colorectal cancer cells. Indian J. Pharm. Educ. Res 2022 56 3s s407 s412 10.5530/ijper.56.3s.148
    [Google Scholar]
  43. Marjaneh R.M. Rahmani F. Hassanian S.M. Rezaei N. Hashemzehi M. Bahrami A. Ariakia F. Fiuji H. Sahebkar A. Avan A. Khazaei M. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer. J. Cell. Physiol. 2018 233 10 6785 6798 10.1002/jcp.26538 29737515
    [Google Scholar]
  44. Gaidhani R.H. Balasubramaniam G. An epidemiological review of pancreatic cancer with special reference to India. Indian J. Med. Sci. 2021 73 1 99 109 10.25259/IJMS_92_2020
    [Google Scholar]
  45. Pastorelli D. Fabricio A.S.C. Giovanis P. D’Ippolito S. Fiduccia P. Soldà C. Buda A. Sperti C. Bardini R. Da Dalt G. Rainato G. Gion M. Ursini F. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res. 2018 132 72 79 10.1016/j.phrs.2018.03.013 29614381
    [Google Scholar]
  46. Singh N. Agrawal S. Jiwnani S. Khosla D. Malik P.S. Mohan A. Penumadu P. Prasad K.T. Lung cancer in India. J. Thorac. Oncol. 2021 16 8 1250 1266 10.1016/j.jtho.2021.02.004 34304854
    [Google Scholar]
  47. Alhakamy N. Badr-Eldin S. Fahmy U. Alruwaili N. Awan Z. Caruso G. Alfaleh M. Alaofi A. Arif F. Ahmed O. Alghaith A. Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics 2020 12 8 761 10.3390/pharmaceutics12080761 32806507
    [Google Scholar]
  48. Xu L. Xu D. Li Z. Gao Y. Chen H. Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells. Beilstein J. Nanotechnol. 2019 10 1 1933 1942 10.3762/bjnano.10.189 31598460
    [Google Scholar]
  49. Somasegar S. Reddy A.R. Karam A. Trends in ovarian cancer incidence and incidence-based mortality: A 15-year population-based analysis. J. Clin. Oncol. 2023 41 16
    [Google Scholar]
  50. Alhakamy N.A. A Fahmy U. Badr-Eldin S.M. Ahmed O.A.A. Asfour H.Z. Aldawsari H.M. Algandaby M.M. Eid B.G. Abdel-Naim A.B. Awan Z.A. K Alruwaili N. Mohamed A.I. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics 2020 12 4 346 10.3390/pharmaceutics12040346 32290412
    [Google Scholar]
  51. Permana A.D. Utami R.N. Courtenay A.J. Manggau M.A. Donnelly R.F. Rahman L. Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles. J. Photochem. Photobiol. B 2020 205 111846 10.1016/j.jphotobiol.2020.111846 32151785
    [Google Scholar]
  52. Vali C.S. Khan A. Bharathi M.P. Phytopharmacological and ethnomedicinal uses of the Genus Berberis (Berberidaceae): A review. Int J Mod Pharm Res. 2021 5 2 33 41
    [Google Scholar]
  53. Di Pierro F. Menghi A.B. Barreca A. Lucarelli M. Calandrelli A. Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: A clinical trial. Altern. Med. Rev. 2009 14 2 154 160 19594224
    [Google Scholar]
  54. Gilardini L. Pasqualinotto L. Di Pierro F. Risso P. Invitti C. Effects of Greenselect Phytosome® on weight maintenance after weight loss in obese women: a randomized placebo-controlled study. BMC Complement. Altern. Med. 2016 16 1 233 10.1186/s12906‑016‑1214‑x 27450231
    [Google Scholar]
  55. Liu Z. Wang J. Gao W. Man S. Guo H. Zhang J. Liu C. Formulation and in vitro absorption analysis of Rhizoma paridis steroidal saponins. Int. J. Pharm. 2013 441 1-2 680 686 10.1016/j.ijpharm.2012.10.028 23107795
    [Google Scholar]
  56. Liu S. Tan Q.Y. Wang H. Liao H. Zhang J.Q. Preparation, characterization and in vitro anti-tumor activities of evodiamine phospholipids complex. Chung Kuo Yao Hsueh Tsa Chih 2012 7 11
    [Google Scholar]
  57. El-Menshawe S. Ali A. Rabeh M. Khalil N. Nanosized soy phytosome-based thermogel as topical anti-obesity formulation: an approach for acceptable level of evidence of an effective novel herbal weight loss product. Int. J. Nanomedicine 2018 13 307 318 10.2147/IJN.S153429 29391791
    [Google Scholar]
  58. Glode ML The effect of high-dose silybin-phytosome in men with prostate cancer. Patent NCT00487721, 2014
  59. Mao TJ Diego S Leucoselect Phytosome for Neoadjuvant Treatment of Early Stage Lung Cancer. Patent NCT04515004, 2020
  60. Maroni P. Study of grape seed extract in asymptomatic non-metastatic prostate cancer patients with rising PSA. Patent NCT03087903, 2017
  61. Jang WT A phase II study to assess efficacy of combined treatment With Erlotinib (Tarceva) and Silybin-phytosome (Siliphos) in patients With EGFR mutant lung adenocarcinoma. Patent NCT02146118, 2014
/content/journals/cbc/10.2174/0115734072354014250108100013
Loading
/content/journals/cbc/10.2174/0115734072354014250108100013
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: lung cancer ; prostate cancer ; phytosome ; pancreatic cancer ; Colon cancer ; breast cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test