Skip to content
2000
image of N-Heterocyclic Carbene-Silver(I) Complexes: Emerging Developments for Medicinal Applications

Abstract

The increased applications of silver(I)-NHC complexes have led researchers to explore their medicinal studies and chemical properties. Silver(I) ions have proven to be considerable antimicrobial and anticancer agents, and their incorporation into various medical and associated fields has attracted immense attention. NHC-metal complexes have also been used as catalysts (homogeneous or heterogeneous) in developing various metal-based drugs. This has made them an increasingly popular choice since they provide favourable prerequisites for drug designing due to their great structural diversity, low toxic profile, and a multitude of chemical properties. It has been found that most of the silver(I)-NHC complexes have been more effective than their precursors. The results for various biological properties of imidazole and benzimidazole-based silver (I)-NHC complexes with functionalized and non-functionalized ligands have been summarized in this review. It will serve as a context guide for researchers studying Ag(I)-NHC complexes and their medicinal applications based on the status of research and trends over the past years.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072349038250131050619
2025-03-11
2025-04-24
Loading full text...

Full text loading...

References

  1. Piddock L.J.V. The crisis of no new antibiotics—what is the way forward? Lancet Infect. Dis. 2012 12 3 249 253 10.1016/S1473‑3099(11)70316‑4 22101066
    [Google Scholar]
  2. Chattopadhyay M.K. Chakraborty R. Grossart H.P. Reddy G.S. Jagannadham M. V. Antibiotic resistance of bacteria BioMed Res Int. 2015 2015 501658 10.1155/2015/501658
    [Google Scholar]
  3. Padiyara P. Inoue H. Sprenger M. Global Governance Mechanisms to Address Antimicrobial Resistance. Infect. Dis. (Auckl.) 2018 11 1178633718767887 10.1177/1178633718767887 29686487
    [Google Scholar]
  4. A Patil S. P Hoagland A. A Patil S. Bugarin A. N-heterocyclic carbene-metal complexes as bio-organometallic antimicrobial and anticancer drugs, an update (2015-2020). Future Med. Chem. 2020 12 24 2239 2275 10.4155/fmc‑2020‑0175 33228391
    [Google Scholar]
  5. dos Santos P.V.P. Ribeiro C.M. Pavan F.R. Corbi P.P. Bergamini F.R.G. Carvalho M.A. D’Oliveria K.A. Cuin A. Promising Ag(I) complexes with N-acylhydrazones from aromatic aldehydes and isoniazid against multidrug resistance in tuberculosis. J. Mol. Struct. 2021 1234 130193 10.1016/j.molstruc.2021.130193
    [Google Scholar]
  6. Lin J.C.Y. Huang R.T.W. Lee C.S. Bhattacharyya A. Hwang W.S. Lin I.J.B. Coinage metal−n-Heterocyclic carbene complexes. Chem. Rev. 2009 109 8 3561 3598 10.1021/cr8005153
    [Google Scholar]
  7. Fatima T. Haque R.A. Ahmad A. Hassan L.E.A. Ahamed M.B.K. Majid A.M.S.A. Razali M.R. Tri N-Heterocyclic Carbene Trinuclear Silver(I) complexes: Synthesis and In vitro cytotoxicity studies. J. Mol. Struct. 2020 1222 128890 10.1016/j.molstruc.2020.128890
    [Google Scholar]
  8. Mohamed Haziz U.F. Haque R.A. Al-Ashraf Abdullah A. Razali M.R. Mononuclear silver(I)- N -heterocyclic carbene complexes with benzimidazole-2-ylidene ligands: synthesis, crystal structure analyses and comparative antibacterial studies. J. Coord. Chem. 2020 73 17-19 2698 2717 10.1080/00958972.2020.1830381
    [Google Scholar]
  9. Haziz U.F.M. Haque R.A. Amirul A.A. Razali M.R. Synthesis, Structural Analysis and Antibacterial Studies of Bis- and Open Chain Tetra-N-Heterocyclic Carbene Dinuclear Silver(I) Complexes. J. Mol. Struct. 2021 1236 130301 10.1016/j.molstruc.2021.130301
    [Google Scholar]
  10. Hussaini S.Y. Haque R.A. Haziz U.F.M. Amirul A.A. Razali M.R. Dinuclear silver(I)- and gold(I)-N-heterocyclic carbene complexes of N-alkyl substituted bis-benzimidazol-2-ylidenes with aliphatic spacer: Synthesis, characterizations and antibacterial studies. J. Mol. Struct. 2021 1246 131187 10.1016/j.molstruc.2021.131187
    [Google Scholar]
  11. Ielo I. Iacopetta D. Saturnino C. Longo P. Galletta M. Drommi D. Rosace G. Sinicropi M.S. Plutino M.R. Gold derivatives development as prospective anticancer drugs for breast cancer treatment. Appl. Sci. 2021 11 5 2089 10.3390/app11052089
    [Google Scholar]
  12. Johnstone T.C. Suntharalingam K. Lippard S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016 116 5 3436 3486 10.1021/acs.chemrev.5b00597 26865551
    [Google Scholar]
  13. Basu U. Banik B. Wen R. Pathak R.K. Dhar S. The Platin-X series: activation, targeting, and delivery. Dalton Trans. 2016 45 33 12992 13004 10.1039/C6DT01738J 27493131
    [Google Scholar]
  14. Atiyeh B.S. Ioannovich J. Magliacani G. Masellis M. Costagliola M. Dham R. Al-Farhan M. Efficacy of moist exposed burn ointment in the management of cutaneous wounds and ulcers: a multicenter pilot study. Ann. Plast. Surg. 2002 48 2 226 227 10.1097/00000637‑200202000‑00032 11910244
    [Google Scholar]
  15. Banti C.N. Giannoulis A.D. Kourkoumelis N. Owczarzak A.M. Poyraz M. Kubicki M. Charalabopoulos K. Hadjikakou S.K. Mixed ligand–silver(i) complexes with anti-inflammatory agents which can bind to lipoxygenase and calf-thymus DNA, modulating their function and inducing apoptosis. Metallomics 2012 4 6 545 560 10.1039/c2mt20039b 22552402
    [Google Scholar]
  16. Pöthig A. Casini A. Recent developments of supramolecular metal-based structures for applications in cancer therapy and imaging. Theranostics 2019 9 11 3150 3169 10.7150/thno.31828 31244947
    [Google Scholar]
  17. Frei A. Zuegg J. Elliott A.G. Baker M. Braese S. Brown C. Chen F. Dowson C.G. Dujardin G. Jung N. King A.P. Mansour A.M. Massi M. Moat J. Mohamed H.A. Renfrew A.K. Rutledge P.J. Sadler P.J. Todd M.H. Willans C.E. Wilson J.J. Cooper M.A. Blaskovich M.A.T. Correction: Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020 11 4531 4531 10.1039/C9SC06460E
    [Google Scholar]
  18. Morones-Ramirez J.R. Winkler J.A. Spina C.S. Collins J.J. J. RubenMorones-Ramirez Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 2013 5 190 190ra81 10.1126/scitranslmed.3006276 23785037
    [Google Scholar]
  19. Klasen H.J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000 26 2 131 138 10.1016/S0305‑4179(99)00116‑3 10716355
    [Google Scholar]
  20. Singh R. Kaushik N.K. Synthesis, spectral, thermal and anti-fungal studies of organotin(IV) thiohydrazone complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009 72 4 691 696 10.1016/j.saa.2008.06.003 19162535
    [Google Scholar]
  21. Singh R. Chaudhary P. Kaushik N.K. A review: Organotin compounds in corrosion inhibition. Rev. Inorg. Chem. 2010 30 4 10.1515/REVIC.2010.30.4.275
    [Google Scholar]
  22. Kumar S. Kumari P. Singh R. Emerging Nanomaterials for Cancer Therapy 2019 10.1007/978‑981‑13‑8954‑2
    [Google Scholar]
  23. Patanjali P. Kumar R. Sourabh S. Kumar A. Chaudhary P. Singh R. Reviewing Gold(III) complexes as effective biological operators. Main Group Chem. 2018 17 1 35 52 10.3233/MGC‑180247
    [Google Scholar]
  24. Nagyal L. Kumar A. Sharma R. Yadav R. Chaudhary P. Singh R. Bioinorganic Chemistry of Platinum(IV) Complexes as Platforms for Anticancer Agents. Curr. Bioact. Compd. 2020 16 6 726 737 10.2174/1573407215666190409105351
    [Google Scholar]
  25. Kumar A. Tateyama S. Yasaki K. Ali M.A. Takaya N. Singh R. Kaneko T. Ultrahigh performance bio-based polyimides from 4,4′-diaminostilbene. Polymer (Guildf.) 2016 83 182 189 10.1016/j.polymer.2015.12.008
    [Google Scholar]
  26. Gandhi N. Kumar A. Kumar C. Mishra N. Chaudhary P. Kaushik N.K. Singh R. Synthesis, characterization, thermal and biological activity of some novel Cadmium(II) – pyridine and purine base complexes. Main Group Chem. 2015 15 1 35 46 10.3233/MGC‑150181
    [Google Scholar]
  27. Kirmse W. Stable singlet carbenes-plentiful and versatile. Angew. Chem. Int. Ed. 2004 43 14 1767 1769 10.1002/anie.200301729 15054777
    [Google Scholar]
  28. Gómez-Suárez A. Nelson D.J. Nolan S.P. Quantifying and understanding the steric properties of N-heterocyclic carbenes. Chem. Commun. 2017 53 18 2650 2660 10.1039/C7CC00255F 28203667
    [Google Scholar]
  29. Huynh H.V. Electronic properties of N-Heterocyclic carbenes and their experimental determination. Chem. Rev. 2018 11 9457 9492 10.1021/acs.chemrev.8b00067
    [Google Scholar]
  30. Gopalakrishnan A.K. Angamaly S.A. Velayudhan M.P. An Insight into the biological properties of imidazole‐based schiff bases: A review. ChemistrySelect 2021 6 40 10918 10947 10.1002/slct.202102619
    [Google Scholar]
  31. Scattolin T. Nolan S.P. Synthetic Routes to Late Transition Metal–NHC Complexes. Trends Chem. 2020 2 8 721 736 10.1016/j.trechm.2020.06.001
    [Google Scholar]
  32. Fortman G.C. Nolan S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. Chem. Soc. Rev. 2011 40 10 5151 5169 10.1039/c1cs15088j 21731956
    [Google Scholar]
  33. Güven Ö.Ö. Erdoğan T. Göker H. Yıldız S. Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers. Bioorg. Med. Chem. Lett. 2007 17 8 2233 2236 10.1016/j.bmcl.2007.01.061 17289382
    [Google Scholar]
  34. Tunçbilek M. Kiper T. Altanlar N. Synthesis and in vitro antimicrobial activity of some novel substituted benzimidazole derivatives having potent activity against MRSA. Eur. J. Med. Chem. 2009 44 3 1024 1033 10.1016/j.ejmech.2008.06.026 18718694
    [Google Scholar]
  35. Seenaiah D. Reddy P.R. Reddy G.M. Padmaja A. Padmavathi V. Siva krishna N. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur. J. Med. Chem. 2014 77 1 7 10.1016/j.ejmech.2014.02.050 24607584
    [Google Scholar]
  36. Padalkar V.S. Gupta V.D. Phatangare K.R. Patil V.S. Umape P.G. Sekar N. Synthesis of novel dipodal-benzimidazole, benzoxazole and benzothiazole from cyanuric chloride: Structural, photophysical and antimicrobial studies. J. Saudi Chem. Soc. 2014 18 3 262 268 10.1016/j.jscs.2011.07.001
    [Google Scholar]
  37. Hopkinson M.N. Richter C. Schedler M. Glorius F. An overview of N-heterocyclic carbenes. Nature 2014 510 7506 485 496 10.1038/nature13384 24965649
    [Google Scholar]
  38. Arduengo A.J. III Dias H.V.R. Calabrese J.C. Davidson F. Homoleptic carbene-silver(I) and carbene-copper(I) complexes. Organometallics 1993 12 9 3405 3409 10.1021/om00033a009
    [Google Scholar]
  39. Haque R.A. Salman A.W. Budagumpi S. Abdullah A.A.A. Majid A.M.S.A. Sterically tuned Ag(i)- and Pd(ii)-N-heterocyclic carbene complexes of imidazol-2-ylidenes: synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Metallomics 2013 5 6 760 769 10.1039/c3mt00051f 23645390
    [Google Scholar]
  40. Wang H.M.J. Lin I.J.B. Facile synthesis of silver(I)-carbene complexes. Useful carbene transfer agents. Organometallics 1998 17 5 972 975 10.1021/om9709704
    [Google Scholar]
  41. Kaloğlu M. Kaloğlu N. Günal S. Özdemir İ. Synthesis of N -heterocyclic carbene-based silver complexes and their antimicrobial properties against bacteria and fungi. J. Coord. Chem. 2021 74 17-20 3031 3047 10.1080/00958972.2021.2014457
    [Google Scholar]
  42. Hamamci Alisir S. Sariboga B. Caglar S. Buyukgungor O. Synthesis, characterization, photoluminescent properties and antimicrobial activities of two novel polymeric silver(I) complexes with diclofenac. J. Mol. Struct. 2017 1130 156 164 10.1016/j.molstruc.2016.10.026
    [Google Scholar]
  43. Muskawar P.N. Karthikeyan P. Aswar S.A. Bhagat P.R. Senthil Kumar S. NHC–metal complexes based on benzimidazolium moiety for chemical transformation. Arab. J. Chem. 2016 9 S1765 S1778 10.1016/j.arabjc.2012.04.040
    [Google Scholar]
  44. Haque R.A. Choo S.Y. Budagumpi S. Abdullah A.A.A. Khadeer Ahamed M.B. Abdul Majid A.M.S. Synthesis, crystal structures, characterization and biological studies of nitrile-functionalized silver(I) N-heterocyclic carbene complexes. Inorg. Chim. Acta 2015 433 35 44 10.1016/j.ica.2015.04.023
    [Google Scholar]
  45. Haque R.A. Choo S.Y. Budagumpi S. Iqbal M.A. Al-Ashraf Abdullah A. Silver(I) complexes of mono- and bidentate N-heterocyclic carbene ligands: Synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Eur. J. Med. Chem. 2015 90 82 92 10.1016/j.ejmech.2014.11.005 25461313
    [Google Scholar]
  46. Akkoç S. Gök Y. Özdemir İ. Günal S. N -Heterocyclic carbene silver complexes: synthesis, characterization and in vitro antimicrobial studies. Journal of the Chinese Advanced Materials Society 2014 2 1 20 30 10.1080/22243682.2014.882795
    [Google Scholar]
  47. Haque R.A. Ghdhayeb M.Z. Budagumpi S. Salman A.W. Ahamed M.B.K. Majid A.M.S.A. Non-symmetrically substituted N-heterocyclic carbene–Ag(I) complexes of benzimidazol-2-ylidenes: Synthesis, crystal structures, anticancer activity and transmetallation studies. Inorg. Chim. Acta 2013 394 519 525 10.1016/j.ica.2012.09.013
    [Google Scholar]
  48. Liu W. Gust R. Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem. Soc. Rev. 2013 42 2 755 773 10.1039/C2CS35314H 23147001
    [Google Scholar]
  49. Üstün E. Şahin N. Çelik C. Tutar U. Özdemir N. Gürbüz N. Özdemir İ. Synthesis, characterization, antimicrobial and antibiofilm activity, and molecular docking analysis of NHC precursors and their Ag-NHC complexes. Dalton Trans. 2021 50 42 15400 15412 10.1039/D1DT02003J 34647935
    [Google Scholar]
  50. Gautier A. Cisnetti F. Advances in metal–carbene complexes as potent anti-cancer agents. Metallomics 2012 4 1 23 32 10.1039/C1MT00123J 22027962
    [Google Scholar]
  51. Ezugwu C.I. Kabir N.A. Yusubov M. Verpoort F. Metal–organic frameworks containing N-heterocyclic carbenes and their precursors. Coord. Chem. Rev. 2016 307 188 210 10.1016/j.ccr.2015.06.012
    [Google Scholar]
  52. Türker D. Üstün E. Günal S. Yıldız H. D Düşünceli S. Özdemir İ. Cyanopropyl functionalized benzimidazolium salts and their silver N-heterocyclic carbene complexes: Synthesis, antimicrobial activity, and theoretical analysis. Arch. Pharm. (Weinheim) 2022 355 6 e2200041 10.1002/ardp.202200041 35352839
    [Google Scholar]
  53. Garrison J.C. Youngs W.J. Ag(I) N-heterocyclic carbene complexes: synthesis, structure, and application. Chem. Rev. 2005 105 11 3978 4008 10.1021/cr050004s 16277368
    [Google Scholar]
  54. Mercs L. Albrecht M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 2010 39 6 1903 1912 10.1039/b902238b 20502793
    [Google Scholar]
  55. Karataş M.O. Olgundeniz B. Günal S. Özdemir İ. Alıcı B. Çetinkaya E. Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg. Med. Chem. 2016 24 4 643 650 10.1016/j.bmc.2015.12.032 26740157
    [Google Scholar]
  56. Kascatan-Nebioglu A. Panzner M.J. Tessier C.A. Cannon C.L. Youngs W.J. N-Heterocyclic carbene–silver complexes: A new class of antibiotics. Coord. Chem. Rev. 2007 251 5-6 884 895 10.1016/j.ccr.2006.08.019
    [Google Scholar]
  57. Habib A. Iqbal M.A. Bhatti H.N. Kamal A. Kamal S. Synthesis of alkyl/aryl linked binuclear silver(I)-N-Heterocyclic carbene complexes and evaluation of their antimicrobial, hemolytic and thrombolytic potential. Inorg. Chem. Commun. 2020 111 107670 10.1016/j.inoche.2019.107670
    [Google Scholar]
  58. Jakob C.H.G. Muñoz A.W. Schlagintweit J.F. Weiß V. Reich R.M. Sieber S.A. Correia J.D.G. Kühn F.E. Anticancer and antibacterial properties of trinuclear Cu(I), Ag(I) and Au(I) macrocyclic NHC/urea complexes. J. Organomet. Chem. 2021 932 121643 10.1016/j.jorganchem.2020.121643
    [Google Scholar]
  59. Despagnet-Ayoub E. Grubbs R.H. A ruthenium olefin metathesis catalyst with a four-membered N-heterocyclic carbene ligand. Organometallics 2005 24 3 338 340 10.1021/om049092h
    [Google Scholar]
  60. Herrmann W.A. Elison M. Fischer J. Köcher C. Artus G.R.J. N-heterocyclic carbenes[+]: Generation under mild conditions and formation of group 8-10 transition metal complexes relevant to catalysis. Chemistry 1996 2 7 772 780 10.1002/chem.19960020708
    [Google Scholar]
  61. Kantchev E.A.B. O’Brien C.J. Organ M.G. Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions--a synthetic chemist’s perspective. Angew. Chem. Int. Ed. 2007 46 16 2768 2813 10.1002/anie.200601663 17410611
    [Google Scholar]
  62. Peris E. Crabtree R.H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes. Coord. Chem. Rev. 2004 248 21-24 2239 2246 10.1016/j.ccr.2004.04.014
    [Google Scholar]
  63. Hameury S. de Frémont P. Breuil P.A.R. Olivier-Bourbigou H. Braunstein P. Synthesis and characterization of oxygen-functionalised-NHC silver(I) complexes and NHC transmetallation to nickel(II). Dalton Trans. 2014 43 12 4700 4710 10.1039/C3DT52773E 24473851
    [Google Scholar]
  64. Zhang X. Gu S. Xia Q. Chen W. New structural motifs of silver and gold complexes of pyridine-functionalized benzimidazolylidene ligands. J. Organomet. Chem. 2009 694 15 2359 2367 10.1016/j.jorganchem.2009.03.031
    [Google Scholar]
  65. Eloy L. Jarrousse A.S. Teyssot M.L. Gautier A. Morel L. Jolivalt C. Cresteil T. Roland S. Anticancer activity of silver-N-heterocyclic carbene complexes: caspase-independent induction of apoptosis via mitochondrial apoptosis-inducing factor (AIF). ChemMedChem 2012 7 5 805 814 10.1002/cmdc.201200055 22383263
    [Google Scholar]
  66. Penney A.A. Sizov V.V. Grachova E.V. Krupenya D.V. Gurzhiy V.V. Starova G.L. Tunik S.P. Aurophilicity in Action: Fine-Tuning the Gold(I)–Gold(I) Distance in the Excited State To Modulate the Emission in a Series of Dinuclear Homoleptic Gold(I)–NHC Complexes. Inorg. Chem. 2016 55 10 4720 4732 10.1021/acs.inorgchem.5b02722 26882198
    [Google Scholar]
  67. Patil S. Deally A. Gleeson B. Müller-Bunz H. Paradisi F. Tacke M. Synthesis, cytotoxicity and antibacterial studies of symmetrically and non‐symmetrically benzyl‐ or p ‐cyanobenzyl‐substituted N ‐Heterocyclic carbene–silver complexes. Appl. Organomet. Chem. 2010 24 11 781 793 10.1002/aoc.1702
    [Google Scholar]
  68. Isbel S.R. Patil S.A. Bugarin A. NHCs silver complexes as potential antimicrobial agents. Inorg. Chim. Acta 2024 563 1 121899 10.1016/j.ica.2023.121899 38292701
    [Google Scholar]
  69. Akkoç M. Balcıoğlu S. Gürses C. Taskin Tok T. Ateş B. Yaşar S. Protonated water-soluble N-heterocyclic carbene ruthenium(II) complexes: Synthesis, cytotoxic and DNA binding properties and molecular docking study. J. Organomet. Chem. 2018 869 67 74 10.1016/j.jorganchem.2018.06.003
    [Google Scholar]
  70. Asekunowo P.O. Haque R.A. Razali M.R. A comparative insight into the bioactivity of mono- and binuclear silver(I)-N-heterocyclic carbene complexes: synthesis, lipophilicity and substituent effect. Rev. Inorg. Chem. 2017 37 1 29 50 10.1515/revic‑2016‑0007
    [Google Scholar]
  71. Biffis A. Cipani M. Tubaro C. Basato M. Costante M. Bressan E. Venzo A. Graiff C. Dinuclear complexes of silver(i) and gold(i) with macrocyclic dicarbene ligands bearing a 2,6-lutidinyl bridge: synthesis, structural analysis and dynamic behaviour in solution. New J. Chem. 2013 37 12 4176 4184 10.1039/c3nj01000g
    [Google Scholar]
  72. Budagumpi S. Kim K.H. Kim I. Catalytic and coordination facets of single-site non-metallocene organometallic catalysts with N-heterocyclic scaffolds employed in olefin polymerization. Coord. Chem. Rev. 2011 255 23-24 2785 2809 10.1016/j.ccr.2011.04.013
    [Google Scholar]
  73. Yaşar S. Karaca E.Ö. Şahin Ç. Özdemir İ. Şahin O. Büyükgüngör O. Novel ruthenium(II)–N-heterocyclic carbene complexes; synthesis, characterization and catalytic application. J. Organomet. Chem. 2015 789-790 1 7 10.1016/j.jorganchem.2015.04.012
    [Google Scholar]
  74. Abu-Youssef M.A.M. Soliman S.M. Langer V. Gohar Y.M. Hasanen A.A. Makhyoun M.A. Zaky A.H. Öhrström L.R. Synthesis, crystal structure, quantum chemical calculations, DNA interactions, and antimicrobial activity of [Ag(2-amino-3-methylpyridine)(2)]NO(3) and [Ag(pyridine-2-carboxaldoxime)NO(3)]. Inorg. Chem. 2010 49 21 9788 9797 10.1021/ic100581k 20929250
    [Google Scholar]
  75. Lázaro-Martínez J.M. Lombardo Lupano L.V. Piehl L.L. Rodríguez-Castellón E. Campo Dall’ Orto V. New Insights about the Selectivity in the Activation of Hydrogen Peroxide by Cobalt or Copper Hydrogel Heterogeneous Catalysts in the Generation of Reactive Oxygen Species. J. Phys. Chem. C 2016 120 51 29332 29347 10.1021/acs.jpcc.6b10957
    [Google Scholar]
  76. Zheng W. Zheng Q. Chen C. Wang H. Multinuclear silver N ‐heterocyclic carbene complexes provoke potent anticancer activity via mitochondrial dysfunction and cell necrosis induction. Appl. Organomet. Chem. 2024 38 10 e6544 10.1002/aoc.6544
    [Google Scholar]
  77. Hussaini S.Y. Haque R.A. Asekunowo P.O. Abdul Majid A.M.S. Taleb Agha M. Razali M.R. Synthesis, characterization and anti-proliferative activity of propylene linked bis-benzimidazolium salts and their respective dinuclear Silver(I)- N -heterocyclic carbene complexes. J. Organomet. Chem. 2017 840 56 62 10.1016/j.jorganchem.2017.04.011
    [Google Scholar]
  78. Poethig A. Strassner T. Neutral dinuclear silver(I)-NHC complexes: Synthesis and photophysics. Organometallics 2011 30 24 6674 6684 10.1021/om200860y
    [Google Scholar]
  79. Ray S. Mohan R. Singh J.K. Samantaray M.K. Shaikh M.M. Panda D. Ghosh P. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am. Chem. Soc. 2007 129 48 15042 15053 10.1021/ja075889z 17988129
    [Google Scholar]
  80. Hindi K.M. Siciliano T.J. Durmus S. Panzner M.J. Medvetz D.A. Reddy D.V. Hogue L.A. Hovis C.E. Hilliard J.K. Mallet R.J. Tessier C.A. Cannon C.L. Youngs W.J. Synthesis, stability, and antimicrobial studies of electronically tuned silver acetate N-heterocyclic carbenes. J. Med. Chem. 2008 51 6 1577 1583 10.1021/jm0708679 18288795
    [Google Scholar]
  81. Trnka T.M. Grubbs R.H. The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 2001 34 1 18 29 10.1021/ar000114f 11170353
    [Google Scholar]
  82. Caminade A.M. Maraval V. Laurent R. Majoral J.P. Organometallic Derivatives of Phosphorus-containing Dendrimers. Synthesis, Properties and Applications in Catalysis. Curr. Org. Chem. 2002 6 8 739 774 10.2174/1385272023374012
    [Google Scholar]
  83. Özdemir İ. Gürbüz N. Doğan Ö. Günal S. Özdemir İ. Synthesis and antimicrobial activity of Ag(I)‐ N ‐heterocyclic carbene complexes derived from benzimidazol‐2‐ylidene. Appl. Organomet. Chem. 2010 24 11 758 762 10.1002/aoc.1693
    [Google Scholar]
  84. Özdemir İ. Demir S. Günal S. Özdemir İ. Arıcı C. Ülkü D. Synthesis, characterization and antimicrobial activity of new silver complexes with N-heterocyclic carbene ligands. Inorg. Chim. Acta 2010 363 14 3803 3808 10.1016/j.ica.2010.07.034
    [Google Scholar]
  85. Iqbal M.A. Haque R.A. Ahamed M.B.K. Majid A.M.S.A. Al-Rawi S.S. Synthesis and anticancer activity of para-xylyl linked bis-benzimidazolium salts and respective Ag(I) N-heterocyclic carbene complexes. Med. Chem. Res. 2013 22 5 2455 2466 10.1007/s00044‑012‑0240‑6
    [Google Scholar]
  86. Haque R.A. Iqbal M.A. Asekunowo P. Majid A.M.S.A. Khadeer Ahamed M.B. Umar M.I. Al-Rawi S.S. Al-Suede F.S.R. Synthesis, structure, anticancer, and antioxidant activity of para-xylyl linked bis-benzimidazolium salts and respective dinuclear Ag(I) N-heterocyclic carbene complexes (Part-II). Med. Chem. Res. 2013 22 10 4663 4676 10.1007/s00044‑012‑0461‑8
    [Google Scholar]
  87. Melaiye A. Simons R.S. Milsted A. Pingitore F. Wesdemiotis C. Tessier C.A. Youngs W.J. Formation of water-soluble pincer silver(I)-carbene complexes: a novel antimicrobial agent. J. Med. Chem. 2004 47 4 973 977 10.1021/jm030262m 14761198
    [Google Scholar]
  88. Johnson N.A. Southerland M.R. Youngs W.J. Recent developments in the medicinal applications of silver-nhc complexes and imidazolium salts. Molecules 2017 22 8 1263 10.3390/molecules22081263 28749425
    [Google Scholar]
  89. O’Beirne C. Alhamad N.F. Ma Q. Müller-Bunz H. Kavanagh K. Butler G. Zhu X. Tacke M. Synthesis, structures and antimicrobial activity of novel NHC∗- and Ph3P-Ag(I)-Benzoate derivatives. Inorg. Chim. Acta 2019 486 294 303 10.1016/j.ica.2018.10.057
    [Google Scholar]
  90. Hudzicki J. 2012 https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro
  91. Browne N. Hackenberg F. Streciwilk W. Tacke M. Kavanagh K. Assessment of in vivo antimicrobial activity of the carbene silver(I) acetate derivative SBC3 using Galleria mellonella larvae. Biometals 2014 27 4 745 752 10.1007/s10534‑014‑9766‑z 25037059
    [Google Scholar]
  92. Achar G. Agarwal P. Brinda K.N. Małecki J.G. Keri R.S. Budagumpi S. Ether and coumarin–functionalized (benz)imidazolium salts and their silver(I)–N–heterocyclic carbene complexes: Synthesis, characterization, crystal structures and antimicrobial studies. J. Organomet. Chem. 2018 854 64 75 10.1016/j.jorganchem.2017.11.005
    [Google Scholar]
  93. Cisnetti F. Gautier A. Metal/N-heterocyclic carbene complexes: opportunities for the development of anticancer metallodrugs. Angew. Chem. Int. Ed. 2013 52 46 11976 11978 10.1002/anie.201306682 24115500
    [Google Scholar]
  94. Citta A. Schuh E. Mohr F. Folda A. Massimino M.L. Bindoli A. Casini A. Rigobello M.P. Fluorescent silver(i) and gold(i)–N-heterocyclic carbene complexes with cytotoxic properties: mechanistic insights. Metallomics 2013 5 8 1006 1015 10.1039/c3mt20260g 23661165
    [Google Scholar]
  95. Sharkey M. O’Gara J. Gordon S. Hackenberg F. Healy C. Paradisi F. Patil S. Schaible B. Tacke M. Investigations into the antibacterial activity of the silver-based antibiotic drug candidate SBC3. Antibiotics 2012 1 1 25 28 10.3390/antibiotics1010025
    [Google Scholar]
  96. Streciwilk W. Cassidy J. Hackenberg F. Müller-Bunz H. Paradisi F. Tacke M. Synthesis, cytotoxic and antibacterial studies of p-benzyl-substituted NHC–silver(I) acetate compounds derived from 4,5-di-p-diisopropylphenyl- or 4,5-di-p-chlorophenyl-1H-imidazole. J. Organomet. Chem. 2014 749 88 99 10.1016/j.jorganchem.2013.09.033
    [Google Scholar]
  97. Patil S. Deally A. Gleeson B. Müller-Bunz H. Paradisi F. Tacke M. Novel benzyl-substituted N-heterocyclic carbene–silver acetate complexes: synthesis, cytotoxicity and antibacterial studies. Metallomics 2011 3 1 74 88 10.1039/C0MT00034E 21135954
    [Google Scholar]
  98. Lasmari S. Ikhlef S. Boulcina R. Mokrani E.H. Bensouici C. Gürbüz N. Dündar M. Karcı H. Özdemir İ. Koç A. Özdemir I. Debache A. New silver Nsingle bondheterocyclic carbenes complexes: Synthesis, molecular docking study and biological activities evaluation as cholinesterase inhibitors and antimicrobials. J. Mol. Struct. 2021 1238 130399 10.1016/j.molstruc.2021.130399
    [Google Scholar]
  99. Asekunowo P.O. Haque R.A. Razali M.R. Avicor S.W. Wajidi M.F.F. Synthesis and characterization of nitrile functionalized silver(I)-N-heterocyclic carbene complexes: DNA binding, cleavage studies, antibacterial properties and mosquitocidal activity against the dengue vector, Aedes albopictus. Eur. J. Med. Chem. 2018 150 601 615 10.1016/j.ejmech.2018.03.029 29550733
    [Google Scholar]
  100. Aher S. Das A. Muskawar P. Osborne J. Bhagat P. Silver (I) complexes of imidazolium based N-heterocyclic carbenes for antibacterial applications. J. Mol. Liq. 2017 231 396 403 10.1016/j.molliq.2017.01.109
    [Google Scholar]
  101. Haque R.A. Haziz U.F.M. Abdullah A.A.A. Shaheeda N. Razali M.R. New non-functionalized and nitrile-functionalized benzimidazolium salts and their silver(I) complexes: Synthesis, crystal structures and antibacterial studies. Polyhedron 2016 109 208 217 10.1016/j.poly.2016.01.039
    [Google Scholar]
  102. Haziz U.F.M. Haque R.A. Amirul A.A. Shaheeda N. Razali M.R. Synthesis, structures and antibacterial studies of non-functionalized and nitrile-functionalized bis-benzimidazolium salts and respective dinuclear silver(I)-N-heterocyclic carbene complexes. Polyhedron 2016 117 628 636 10.1016/j.poly.2016.07.005
    [Google Scholar]
  103. Zetty Zulikha H. Haque R.A. Budagumpi S. Abdul Majid A.M.S. Topology control in nitrile-functionalized silver(I)–N-heterocyclic carbene complexes: Synthesis, molecular structures, and in vitro anticancer studies. Inorg. Chim. Acta 2014 411 40 47 10.1016/j.ica.2013.11.011
    [Google Scholar]
  104. Haque R.A. Budagumpi S. Zetty Zulikha H. Hasanudin N. Khadeer Ahamed M.B. Abdul Majid A.M.S. Silver(I)-N-heterocyclic carbene complexes of nitrile-functionalized imidazol-2-ylidene ligands as anticancer agents. Inorg. Chem. Commun. 2014 44 128 133 10.1016/j.inoche.2014.03.016
    [Google Scholar]
  105. Mnasri A. Mejri A. Al-Hazmy S.M. Arfaoui Y. Özdemir I. Gürbüz N. Hamdi N. Silver– N ‐heterocyclic carbene complexes‐catalyzed multicomponent reactions: Synthesis, spectroscopic characterization, density functional theory calculations, and antibacterial study. Arch. Pharm. (Weinheim) 2021 354 9 2100111 10.1002/ardp.202100111 34128256
    [Google Scholar]
  106. Tagg J.R. McGiven A.R. Assay system for bacteriocins. Appl. Microbiol. 1971 21 5 943 943 10.1128/am.21.5.943‑943.1971 4930039
    [Google Scholar]
  107. Haziz U.F.M. Haque R.A. Amirul A.A. Aidda O.N. Razali M.R. New class of non-symmetrical homo-dibenzimidazolium salts and their dinuclear Silver(I) di-NHC complexes. J. Organomet. Chem. 2019 899 120914 10.1016/j.jorganchem.2019.120914
    [Google Scholar]
  108. Liang X. Luan S. Yin Z. He M. He C. Yin L. Zou Y. Yuan Z. Li L. Song X. Lv C. Zhang W. Recent advances in the medical use of silver complex. Eur. J. Med. Chem. 2018 157 62 80 10.1016/j.ejmech.2018.07.057 30075403
    [Google Scholar]
  109. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard—Second edition. NCCLS 2008 22 15
    [Google Scholar]
  110. Slimani I. Mansour L. Abutaha N. Harrath A.H. Al-Tamimi J. Gürbüz N. Özdemir I. Hamdi N. Synthesis, structural characterization of silver(I)-NHC complexes and their antimicrobial, antioxidant and antitumor activities. J. King Saud Univ. Sci. 2020 32 2 1544 1554 10.1016/j.jksus.2019.12.010
    [Google Scholar]
  111. Boubakri L. Dridi K. Al-Ayed A.S. Ozdemir I. Yasar S. Hamdi N. Synthesis of novel Ag(I)- N -heterocyclic carbene complexes soluble in both water and dichloromethane and their antimicrobial studies. J. Coord. Chem. 2019 72 12 2080 2090 10.1080/00958972.2019.1620218
    [Google Scholar]
  112. Priya N.P. Arunachalam S.V. Sathya N. Chinnusamy V. Jayabalakrishnan C. Catalytic and antimicrobial studies of binuclear ruthenium(III) complexes containing bis-β-diketones. Trans. Met. Chem. 2009 34 4 437 445 10.1007/s11243‑009‑9214‑z
    [Google Scholar]
  113. Rubbiani R. Schuh E. Meyer A. Lemke J. Wimberg J. Metzler-Nolte N. Meyer F. Mohr F. Ott I. TrxR inhibition and antiproliferative activities of structurally diverse gold N-heterocyclic carbene complexes. MedChemComm 2013 4 6 942 948 10.1039/c3md00076a
    [Google Scholar]
  114. Kaps L. Biersack B. Müller-Bunz H. Mahal K. Münzner J. Tacke M. Mueller T. Schobert R. Gold(I)–NHC complexes of antitumoral diarylimidazoles: Structures, cellular uptake routes and anticancer activities. J. Inorg. Biochem. 2012 106 1 52 58 10.1016/j.jinorgbio.2011.08.026 22112840
    [Google Scholar]
  115. Teyssot M.L. Jarrousse A.S. Chevry A. De Haze A. Beaudoin C. Manin M. Nolan S.P. Díez-González S. Morel L. Gautier A. Toxicity of copper(I)-NHC complexes against human tumor cells: Induction of cell cycle arrest, apoptosis, and DNA cleavage. Chemistry 2009 15 2 314 318 10.1002/chem.200801992 19025730
    [Google Scholar]
  116. Oehninger L. Stefanopoulou M. Alborzinia H. Schur J. Ludewig S. Namikawa K. Muñoz-Castro A. Köster R.W. Baumann K. Wölfl S. Sheldrick W.S. Ott I. Evaluation of arene ruthenium( ii ) N-heterocyclic carbene complexes as organometallics interacting with thiol and selenol containing biomolecules. Dalton Trans. 2013 42 5 1657 1666 10.1039/C2DT32319B 23149817
    [Google Scholar]
  117. Patil S. Dietrich K. Deally A. Gleeson B. Müller-Bunz H. Paradisi F. Tacke M. Synthesis, cytotoxicity and antibacterial studies of novel symmetrically and nonsymmetrically 4-(methoxycarbonyl)benzyl-substituted n-heterocyclic carbene-silver acetate complexes. Helv. Chim. Acta 2010 93 12 2347 2364 10.1002/hlca.201000310
    [Google Scholar]
  118. Patil S. Claffey J. Deally A. Hogan M. Gleeson B. Menéndez Méndez L.M. Müller-Bunz H. Paradisi F. Tacke M. Synthesis, cytotoxicity and antibacterial studies of p-methoxybenzyl- substituted and benzyl-substituted n-heterocyclic carbene-silver complexes. Eur. J. Inorg. Chem. 2010 2010 7 1020 1031 10.1002/ejic.200900889
    [Google Scholar]
  119. Patil S. Deally A. Hackenberg F. Kaps L. Müller-Bunz H. Schobert R. Tacke M. Novel benzyl- or 4-cyanobenzyl-substituted N-heterocyclic (Bromo)(carbene)silver(I) and (Carbene)(chloro)gold(I) complexes: Synthesis and preliminary cytotoxicity studies. Helv. Chim. Acta 2011 94 9 1551 1562 10.1002/hlca.201100107
    [Google Scholar]
  120. Patil S. Deally A. Gleeson B. Hackenberg F. Müller-Bunz H. Paradisi F. Tacke M. Synthesis, cytotoxicity and antibacterial studies of novel symmetrically and non-symmetrically p-nitrobenzyl-substituted N-heterocyclic carbene-silver(i) acetate complexes. Z. Anorg. Allg. Chem. 2011 637 3-4 386 396 10.1002/zaac.201000395
    [Google Scholar]
  121. Fichtner I. Cinatl J. Michaelis M. Sanders L.C. Hilger R. Kennedy B.N. Reynolds A.L. Hackenberg F. Lally G. Quinn S.J. McRae I. Tacke M. In vitro and in vivo investigations into the carbene silver acetate anticancer drug candidate SBC1. Lett. Drug Des. Discov. 2012 9 9 815 822 10.2174/157018012803307987
    [Google Scholar]
  122. Çetinkaya B. Özdemir I. Binbaştoğlu B. Günal S. Günal S. Antibacterial and antifungal activities of complexes of ruthenium (II). Arzneimittelforschung 2011 49 6 538 540 10.1055/s‑0031‑1300457 10417872
    [Google Scholar]
  123. Hindi K.M. Panzner M.J. Tessier C.A. Cannon C.L. Youngs W.J. The medicinal applications of imidazolium carbene-metal complexes. Chem. Rev. 2009 109 8 3859 3884 10.1021/cr800500u 19580262
    [Google Scholar]
  124. Oehninger L. Rubbiani R. Ott I. N-Heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans. 2013 42 10 3269 3284 10.1039/C2DT32617E 23223752
    [Google Scholar]
  125. Budagumpi S. Haque R.A. Endud S. Rehman G.U. Salman A.W. Biologically relevant silver(I)-N-heterocyclic carbene complexes: Synthesis, structure, intramolecular interactions, and applications. Eur. J. Inorg. Chem. 2013 2013 25 4367 4388 10.1002/ejic.201300483
    [Google Scholar]
  126. Sirignano E. Pisano A. Caruso A. Saturnino C. Sinicropi M. Lappano R. Botta A. Iacopetta D. Maggiolini M. Longo P. Different 6-aryl-fulvenes exert anti-proliferative effects on cancer cells. Anticancer. Agents Med. Chem. 2015 15 4 468 474 10.2174/1871520614666141019190855 25329489
    [Google Scholar]
  127. Wang H. Sorolla M. II Wang X. Jacobson A.J. Wang H. Pillai A.K. Synthesis, crystal structures and in vitro anticancer activities of two copper(II) coordination compounds. Trans. Met. Chem. 2019 44 3 237 245 10.1007/s11243‑018‑0288‑3
    [Google Scholar]
  128. Üstün E. Özgür A. Coşkun K.A. Demir Düşünceli S. Özdemir İ. Tutar Y. Anticancer activities of manganese-based photoactivatable CO-releasing complexes (PhotoCORMs) with benzimidazole derivative ligands. Trans. Met. Chem. 2017 42 4 331 337 10.1007/s11243‑017‑0136‑x
    [Google Scholar]
  129. Pasdar H. Hedayati Saghavaz B. Foroughifar N. Davallo M. Synthesis, characterization and antibacterial activity of novel 1,3-diethyl-1,3-bis(4-nitrophenyl)urea and its metal(II) complexes. Molecules 2017 22 12 2125 10.3390/molecules22122125 29207464
    [Google Scholar]
  130. Curado N. Giménez N. Miachin K. Aliaga-Lavrijsen M. Cornejo M.A. Jarzecki A.A. Contel M. Preparation of titanocene–gold compounds based on highly active gold(I)‐ N ‐Heterocyclic carbene anticancer agents: Preliminary in vitro studies in renal and prostate cancer cell lines. ChemMedChem 2019 14 11 1086 1095 10.1002/cmdc.201800796 30924298
    [Google Scholar]
  131. Dong J. Huo S. Song C. Shen S. Ren Y. Shi T. Kinetic characterization of the interactions of trans-dichloro-platinum(IV) anticancer prodrugs and a model compound with thiosulfate. Trans. Met. Chem. 2014 39 2 127 133 10.1007/s11243‑013‑9781‑x
    [Google Scholar]
  132. Lee H.M. Chiu P.L. Hu C.H. Lai C.L. Chou Y.C. Synthesis and structural characterization of metal complexes based on pyrazole/imidazolium chlorides. J. Organomet. Chem. 2005 690 2 403 414 10.1016/j.jorganchem.2004.09.053
    [Google Scholar]
  133. Şahin N. Şahin-Bölükbaşı S. Marşan H. Synthesis and antitumor activity of new silver(I)-N-heterocyclic carbene complexes. J. Coord. Chem. 2019 72 22-24 3602 3613 10.1080/00958972.2019.1697808
    [Google Scholar]
  134. Mohamed H.A. Lake B.R.M. Laing T. Phillips R.M. Willans C.E. Synthesis and anticancer activity of silver( i )–N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine. Dalton Trans. 2015 44 16 7563 7569 10.1039/C4DT03679D 25812062
    [Google Scholar]
  135. Mollick M.M.R. Rana D. Dash S.K. Chattopadhyay S. Bhowmick B. Maity D. Mondal D. Pattanayak S. Roy S. Chakraborty M. Chattopadhyay D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab. J. Chem. 2019 12 8 2572 2584 10.1016/j.arabjc.2015.04.033
    [Google Scholar]
  136. Kalaiarasi K. Prasannaraj G. Sahi S.V. Venkatachalam P. Phytofabrication of biomolecule-coated metallic silver nanoparticles using leaf extracts of in vitro-raised bamboo species and its anticancer activity against human PC3 cell lines. Turk. J. Biol. 2015 39 223 232 10.3906/biy‑1406‑10
    [Google Scholar]
  137. Nayak D. Pradhan S. Ashe S. Rauta P.R. Nayak B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci. 2015 457 329 338 10.1016/j.jcis.2015.07.012 26196716
    [Google Scholar]
  138. Arockia John Paul J. Karunai Selvi B. Karmegam N. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice. Appl. Nanosci. 2015 5 8 937 944 10.1007/s13204‑014‑0397‑z
    [Google Scholar]
  139. Mittal A.K. Tripathy D. Choudhary A. Aili P.K. Chatterjee A. Singh I.P. Banerjee U.C. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C 2015 53 120 127 10.1016/j.msec.2015.04.038 26042698
    [Google Scholar]
  140. Hecel A. Kolkowska P. Krzywoszynska K. Szebesczyk A. Rowinska-Zyrek M. Kozlowski H. Ag+ complexes as potential therapeutic agents in medicine and pharmacy. Curr. Med. Chem. 2019 26 4 624 647 10.2174/0929867324666170920125943 28933286
    [Google Scholar]
  141. Marinelli M. Pellei M. Cimarelli C. Dias H.V.R. Marzano C. Tisato F. Porchia M. Gandin V. Santini C. Novel multicharged silver(I)–NHC complexes derived from zwitterionic 1,3-symmetrically and 1,3-unsymmetrically substituted imidazoles and benzimidazoles: Synthesis and cytotoxic properties. J. Organomet. Chem. 2016 806 45 53 10.1016/j.jorganchem.2016.01.018
    [Google Scholar]
  142. Budagumpi S. Endud S. Group XII metal-N-heterocyclic carbene complexes: Synthesis, structural diversity, intramolecular interactions, and applications. Organometallics 2013 32 6 1537 1562 10.1021/om301091p
    [Google Scholar]
  143. Hsiao T.H. Wu T.L. Chatterjee S. Chiu C.Y. Lee H.M. Bettucci L. Bianchini C. Oberhauser W. Palladium acetate complexes bearing chelating N-heterocyclic carbene (NHC) ligands: Synthesis and catalytic oxidative homocoupling of terminal alkynes. J. Organomet. Chem. 2009 694 25 4014 4024 10.1016/j.jorganchem.2009.08.039
    [Google Scholar]
  144. Tubaro C. Biffis A. Gonzato C. Zecca M. Basato M. Reactivity of chelating dicarbene metal complex catalysts, I: An investigation on the Heck reaction. J. Mol. Catal. Chem. 2006 248 1-2 93 98 10.1016/j.molcata.2005.12.016
    [Google Scholar]
  145. Singh R. Nolan S.P. An efficient and mild protocol for the α-arylation of ketones mediated by an (imidazol-2-ylidene)palladium(acetate) system. J. Organomet. Chem. 2005 690 24-25 5832 5840 10.1016/j.jorganchem.2005.07.083
    [Google Scholar]
  146. Viciu M.S. Navarro O. Germaneau R.F. Kelly R.A. Sommer W. Marion N. Stevens E.D. Cavallo L. Nolan S.P. Synthetic and structural studies of (NHC)Pd(allyl)Cl complexes (NHC = N-heterocyclic carbene), Organometallics. 23 (7), (2004). Organometallics 2004 23 7 1629 1635 10.1021/om034319e
    [Google Scholar]
  147. Hackenberg F. Lally G. Müller-Bunz H. Paradisi F. Quaglia D. Streciwilk W. Tacke M. Synthesis and biological evaluation of N-heterocyclic carbene–silver(I) acetate complexes derived from 4,5-ditolyl-imidazole. Inorg. Chim. Acta 2013 395 135 144 10.1016/j.ica.2012.10.029
    [Google Scholar]
  148. Medvetz D.A. Hindi K.M. Panzner M.J. Ditto A.J. Yun Y.H. Youngs W.J. Anticancer activity of Ag(I) N-heterocyclic carbene complexes derived from 4,5-dichloro-1H-imidazole. Met. Based Drugs 2008 2008 1 7 10.1155/2008/384010 18615197
    [Google Scholar]
  149. Luo W.Q. Du X.G. Chen L.Y. Jin C.M. Synthesis, structure, and anticancer activity of four silver(I)-N-heterocyclic carbene complexes and one polymer containing quinolin-8-yl groups. J. Organomet. Chem. 2021 952 122033 10.1016/j.jorganchem.2021.122033
    [Google Scholar]
  150. Haque R.A. Ghdhayeb M.Z. Salman A.W. Budagumpi S. Khadeer Ahamed M.B. Abdul Majid A.M.S. Ag(I)-N-heterocyclic carbene complexes of N-allyl substituted imidazol-2-ylidenes with ortho-, meta- and para-xylyl spacers: Synthesis, crystal structures and in vitro anticancer studies. Inorg. Chem. Commun. 2012 22 113 119 10.1016/j.inoche.2012.05.037
    [Google Scholar]
  151. Haque R.A. Iqbal M.A. Budagumpi S. Khadeer Ahamed M.B. Abdul Majid A.M.S. Hasanudin N. Binuclear meta ‐xylyl‐linked Ag(I)‐ N ‐heterocyclic carbene complexes of N ‐alkyl/aryl‐alkyl‐substituted bis‐benzimidazolium salts: synthesis, crystal structures and in vitro anticancer studies. Appl. Organomet. Chem. 2013 27 4 214 223 10.1002/aoc.2953
    [Google Scholar]
  152. Asif M. Iqbal M.A. Hussein M.A. Oon C.E. Haque R.A. Khadeer Ahamed M.B. Abdul Majid A.S. Abdul Majid A.M.S. Human colon cancer targeted pro-apoptotic, anti-metastatic and cytostatic effects of binuclear Silver(I)– N -Heterocyclic carbene (NHC) complexes. Eur. J. Med. Chem. 2016 108 177 187 10.1016/j.ejmech.2015.11.034 26649905
    [Google Scholar]
  153. Iqbal M.A. Umar M.I. Haque R.A. Khadeer Ahamed M.B. Asmawi M.Z.B. Majid A.M.S.A. Macrophage and colon tumor cells as targets for a binuclear silver(I) N-heterocyclic carbene complex, an anti-inflammatory and apoptosis mediator. J. Inorg. Biochem. 2015 146 1 13 10.1016/j.jinorgbio.2015.02.001 25699476
    [Google Scholar]
  154. Prayong P. Barusrux S. Weerapreeyakul N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia 2008 79 7-8 598 601 10.1016/j.fitote.2008.06.007 18664377
    [Google Scholar]
  155. Iqbal M.A. Haque R.A. Nasri S.F. Majid A.M.S.A. Ahamed M.B.K. Farsi E. Fatima T. Potential of silver against human colon cancer: (Synthesis, characterization and crystal structures of xylyl (Ortho, meta, & Para) linked bis-benzimidazolium salts and Ag(I)-NHC complexes: In vitro anticancer studies). Chem. Cent. J. 2013 7 1 27 10.1186/1752‑153X‑7‑27 23391345
    [Google Scholar]
  156. Kandeel A. Abu-Elmagd K. Spinner M. Khanna A. Hashimoto K. Fujiki M. Parsi M. Bennett A. El-Gazzaz G. Abd-Elaal A. Atypical clinical presentation of a newer generation anti-fungal drug-resistant fusarium infection after a modified multi-visceral transplant. Ann. Transplant. 2015 20 512 518 10.12659/AOT.892209 26334671
    [Google Scholar]
  157. Goss J.A. Shackleton C.R. McDiarmid S.V. Maggard M. Swenson K. Seu P. Vargas J. Martin M. Ament M. Brill J. Harrison R. Busuttil R.W. Long-term results of pediatric liver transplantation: An analysis of 569 transplants. Ann. Surg. 1998 228 3 411 420 10.1097/00000658‑199809000‑00014 9742924
    [Google Scholar]
  158. Jung W.K. Kim S.H. Koo H.C. Shin S. Kim J.M. Park Y.K. Hwang S.Y. Yang H. Park Y.H. Antifungal activity of the silver ion against contaminated fabric. Mycoses 2007 50 4 265 269 10.1111/j.1439‑0507.2007.01372.x 17576317
    [Google Scholar]
  159. Malachová K. Praus P. Rybková Z. Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci. 2011 53 4 642 645 10.1016/j.clay.2011.05.016
    [Google Scholar]
  160. Vagabov V.M. Ivanov A.Y. Kulakovskaya T.V. Kulakovskaya E.V. Petrov V.V. Kulaev I.S. Efflux of potassium ions from cells and spheroplasts of Saccharomyces cerevisiae yeast treated with silver and copper ions. Biochemistry 2008 73 11 1224 1227 10.1134/S0006297908110084 19120026
    [Google Scholar]
  161. Yang H.C. Pon L.A. Toxicity of metal ions used in dental alloys: A study in the yeast Saccharomyces cerevisiae. Drug Chem. Toxicol. 2003 26 2 75 85 10.1081/DCT‑120020403 12816393
    [Google Scholar]
  162. Wells T.N.C. Scully P. Paravicini G. Proudfoot A.E.I. Payton M.A. Mechanism of irreversible inactivation of phosphomannose isomerases by silver ions and flamazine. Biochemistry 1995 34 24 7896 7903 10.1021/bi00024a014 7794901
    [Google Scholar]
  163. CLSI, (CLSI) 2017
  164. Haque R.A. Asekunowo P.O. Razali M.R. Mohamad F. NHC-silver(I) complexes as chemical nucleases; Synthesis, crystal structures, and antibacterial studies. Heteroatom Chem. 2014 25 3 194 204 10.1002/hc.21160
    [Google Scholar]
  165. Lansdown A.B.G. Silver I: Its antibacterial properties and mechanism of action. J. Wound Care 2002 11 4 125 130 10.12968/jowc.2002.11.4.26389 11998592
    [Google Scholar]
  166. Lansdown A.B.G. A review of the use of silver in wound care: Facts and fallacies. Br. J. Nurs. 2004 13 Sup1 Suppl. S6 S19 10.12968/bjon.2004.13.Sup1.12535 15126971
    [Google Scholar]
  167. Gök Y. Akkoç S. Çelikal Ö.Ö. Özdemir İ. Günal S. In vitro antimicrobial studies of naphthalen-1-ylmethyl substituted silver N-heterocyclic carbene complexes. Arab. J. Chem. 2019 12 8 2513 2518 10.1016/j.arabjc.2015.04.019
    [Google Scholar]
  168. Karvembu R. Jayabalakrishnan C. Natarajan K. Thiobis(β-diketonato)-bridged binuclear ruthenium(III) complexes containing triphenylphosphine or triphenylarsine. Synthetic, spectral, catalytic and antimicrobial studies. Trans. Met. Chem. 2002 27 6 574 579 10.1023/A:1019877128146
    [Google Scholar]
  169. Günal S. Kaloğlu N. Özdemir İ. Demir S. Özdemir İ. Novel benzimidazolium salts and their silver complexes: Synthesis and antibacterial properties. Inorg. Chem. Commun. 2012 21 142 146 10.1016/j.inoche.2012.04.033
    [Google Scholar]
  170. Yığıt B. Gök Y. Özdemır İ. Günal S. Synthesis and antimicrobial studies of 1-methyl-2-dimethylaminoethyl-substituted benzimidazolium salts and N -heterocyclic carbene–silver complexes. J. Coord. Chem. 2012 65 3 371 379 10.1080/00958972.2012.654469
    [Google Scholar]
  171. Gök Y. Akkoç S. Erdoğan H. Albayrak S. In vitro antimicrobial studies of new benzimidazolium salts and silver N -heterocyclic carbene complexes. J. Enzyme Inhib. Med. Chem. 2016 31 6 1322 1327 10.3109/14756366.2015.1132210 26744769
    [Google Scholar]
  172. Nayak S. Gaonkar S.L. Coinage metal N‐ heterocyclic carbene complexes: Recent synthetic strategies and medicinal applications. ChemMedChem 2021 16 9 1360 1390 10.1002/cmdc.202000836 33277791
    [Google Scholar]
  173. Kaloğlu M. Kaloğlu N. Özdemir İ. Günal S. Özdemir İ. Novel benzimidazol-2-ylidene carbene precursors and their silver(I) complexes: Potential antimicrobial agents. Bioorg. Med. Chem. 2016 24 16 3649 3656 10.1016/j.bmc.2016.06.004 27301680
    [Google Scholar]
  174. Shahini C.R. Achar G. Budagumpi S. Müller-Bunz H. Tacke M. Patil S.A. Benzoxazole and dioxolane substituted benzimidazole–based N–heterocyclic carbene–silver(I) complexes: Synthesis, structural characterization and in vitro antimicrobial activity. J. Organomet. Chem. 2018 868 1 1 13 10.1016/j.jorganchem.2018.04.039
    [Google Scholar]
  175. Kaloğlu N. Özdemir İ. Günal S. Özdemir İ. Synthesis and antimicrobial activity of bulky 3,5‐di‐ tert ‐butyl substituent‐containing silver–N‐heterocyclic carbene complexes. Appl. Organomet. Chem. 2017 31 11 e3803 10.1002/aoc.3803
    [Google Scholar]
  176. Medici S. Peana M. Crisponi G. Nurchi V.M. Lachowicz J.I. Remelli M. Zoroddu M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016 327-328 15 349 359 10.1016/j.ccr.2016.05.015
    [Google Scholar]
  177. van der Hoek L. Pyrc K. Jebbink M.F. Vermeulen-Oost W. Berkhout R.J.M. Wolthers K.C. Wertheim-van Dillen P.M.E. Kaandorp J. Spaargaren J. Berkhout B. Identification of a new human coronavirus. Nat. Med. 2004 10 4 368 373 10.1038/nm1024 15034574
    [Google Scholar]
  178. Payne S. Family Coronaviridae. Viruses 2017 149 158 10.1016/B978‑0‑12‑803109‑4.00017‑9
    [Google Scholar]
  179. Zhou P. Yang X.L. Wang X.G. Hu B. Zhang L. Zhang W. Si H.R. Zhu Y. Li B. Huang C.L. Chen H.D. Chen J. Luo Y. Guo H. Jiang R.D. Liu M.Q. Chen Y. Shen X.R. Wang X. Zheng X.S. Zhao K. Chen Q.J. Deng F. Liu L.L. Yan B. Zhan F.X. Wang Y.Y. Xiao G.F. Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020 579 7798 270 273 10.1038/s41586‑020‑2012‑7 32015507
    [Google Scholar]
  180. Wahba L. Jain N. Fire A.Z. Shoura M.J. Artiles K.L. McCoy M.J. Jeong D.E. An extensive meta-metagenomic search identifies SARS-CoV-2-homologous sequences in pangolin lung viromes. MSphere 2020 5 3 e00160-20 10.1128/mSphere.00160‑20 32376697
    [Google Scholar]
  181. de Paiva R.E.F. Marçal Neto A. Santos I.A. Jardim A.C.G. Corbi P.P. Bergamini F.R.G. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans. 2020 49 45 16004 16033 10.1039/D0DT02478C 33030464
    [Google Scholar]
  182. Marzo T. Messori L. A role for metal-based drugs in fighting COVID-19 infection? the case of auranofin. ACS Med. Chem. Lett. 2020 11 6 1067 1068 10.1021/acsmedchemlett.0c00190 32547693
    [Google Scholar]
  183. Karges J. Cohen S.M. Metal complexes as antiviral agents for SARS‐CoV‐2. ChemBioChem 2021 22 16 2600 2607 10.1002/cbic.202100186 34002456
    [Google Scholar]
  184. Ioannou K. Vlasiou M.C. Metal-based complexes against SARS-CoV-2. Biometals 2022 35 4 639 652 10.1007/s10534‑022‑00386‑5 35332435
    [Google Scholar]
  185. Li H. Yuan S. Wei X. Sun H. Metal-based strategies for the fight against COVID-19. Chem. Commun. 2022 58 54 7466 7482 10.1039/D2CC01772E 35730442
    [Google Scholar]
  186. Gil-Moles M. O’Beirne C. Esarev I.V. Lippmann P. Tacke M. Cinatl J. Jr Bojkova D. Ott I. Silver N-heterocyclic carbene complexes are potent uncompetitive inhibitors of the papain-like protease with antiviral activity against SARS-CoV-2. RSC Med. Chem. 2023 14 7 1260 1271 10.1039/D3MD00067B 37484561
    [Google Scholar]
  187. Wang R. Chan J.F.W. Wang S. Li H. Zhao J. Ip T.K.Y. Zuo Z. Yuen K.Y. Yuan S. Sun H. Orally administered bismuth drug together with N -acetyl cysteine as a broad-spectrum anti-coronavirus cocktail therapy. Chem. Sci. 2022 13 8 2238 2248 10.1039/D1SC04515F 35310492
    [Google Scholar]
  188. Yuan S. Ye Z.W. Liang R. Tang K. Zhang A.J. Lu G. Ong C.P. Man Poon V.K. Chan C.C.S. Mok B.W.Y. Qin Z. Xie Y. Chu A.W.H. Chan W.M. Ip J.D. Sun H. Tsang J.O.L. Yuen T.T.T. Chik K.K.H. Chan C.C.Y. Cai J.P. Luo C. Lu L. Yip C.C.Y. Chu H. To K.K.W. Chen H. Jin D.Y. Yuen K.Y. Chan J.F.W. Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters. Science 2022 377 6604 428 433 10.1126/science.abn8939 35737809
    [Google Scholar]
  189. Rothan H.A. Stone S. Natekar J. Kumari P. Arora K. Kumar M. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology 2020 547 7 11 10.1016/j.virol.2020.05.002 32442105
    [Google Scholar]
  190. Cirri D. Marzo T. Tolbatov I. Marrone A. Saladini F. Vicenti I. Dragoni F. Boccuto A. Messori L. In vitro anti-sars-cov-2 activity of selected metal compounds and potential molecular basis for their actions based on computational study. Biomolecules 2021 11 12 1858 10.3390/biom11121858 34944502
    [Google Scholar]
  191. Chuong C. DuChane C.M. Webb E.M. Rai P. Marano J.M. Bernier C.M. Merola J.S. Weger-Lucarelli J. Noble metal organometallic complexes display antiviral activity against sars-cov-2. Viruses 2021 13 6 980 10.3390/v13060980 34070524
    [Google Scholar]
  192. Gil-Moles M. Türck S. Basu U. Pettenuzzo A. Bhattacharya S. Rajan A. Ma X. Büssing R. Wölker J. Burmeister H. Hoffmeister H. Schneeberg P. Prause A. Lippmann P. Kusi-Nimarko J. Hassell-Hart S. McGown A. Guest D. Lin Y. Notaro A. Vinck R. Karges J. Cariou K. Peng K. Qin X. Wang X. Skiba J. Szczupak Ł. Kowalski K. Schatzschneider U. Hemmert C. Gornitzka H. Milaeva E.R. Nazarov A.A. Gasser G. Spencer J. Ronconi L. Kortz U. Cinatl J. Bojkova D. Ott I. Metallodrug profiling against SARS‐CoV‐2 target proteins identifies highly potent inhibitors of the S/ACE2 interaction and the papain‐like protease PL pro. Chemistry 2021 27 71 17928 17940 10.1002/chem.202103258 34714566
    [Google Scholar]
  193. Maldonado N. Amo-Ochoa P. The role of coordination compounds in virus research. Different approaches and trends. Dalton Trans. 2021 50 7 2310 2323 10.1039/D0DT04066E 33496298
    [Google Scholar]
  194. Medici S. Peana M. Nurchi V.M. Lachowicz J.I. Crisponi G. Zoroddu M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015 284 329 350 10.1016/j.ccr.2014.08.002
    [Google Scholar]
  195. Silnikov V. Plotnikov E. In vitro effects of a novel silver-based complex on influenza virus. J. Pharmacol. Pharmacother. 2018 9 4 186 190 10.4103/jpp.JPP_50_18
    [Google Scholar]
  196. Hemmert C. Fabié A. Fabre A. Benoit-Vical F. Gornitzka H. Synthesis, structures, and antimalarial activities of some silver(I), gold(I) and gold(III) complexes involving N-heterocyclic carbene ligands. Eur. J. Med. Chem. 2013 60 64 75 10.1016/j.ejmech.2012.11.038 23287052
    [Google Scholar]
  197. Sánchez O. González S. Higuera-Padilla Á.R. León Y. Coll D. Fernández M. Taylor P. Urdanibia I. Rangel H.R. Ortega J.T. Castro W. Goite M.C. Remarkable in vitro anti-HIV activity of new silver(I)– and gold(I)–N-heterocyclic carbene complexes. Synthesis, DNA binding and biological evaluation. Polyhedron 2016 110 14 23 10.1016/j.poly.2016.02.012
    [Google Scholar]
  198. Fonteh P.N. Keter F.K. Meyer D. HIV therapeutic possibilities of gold compounds. Biometals 2010 23 2 185 196 10.1007/s10534‑010‑9293‑5 20127392
    [Google Scholar]
  199. Tinoco I. Jr Physical chemistry of nucleic acids. Annu. Rev. Phys. Chem. 2002 53 1 1 15 10.1146/annurev.physchem.53.082001.144341 11972000
    [Google Scholar]
  200. Nazeeruddin M.K. Zakeeruddin S.M. Humphry-Baker R. Gorelsky S.I. Lever A.B.P. Grätzel M. Synthesis, spectroscopic and a ZINDO study of cis - and trans -(X 2 )bis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) complexes (X=Cl −, H 2 O, NCS − ). Coord. Chem. Rev. 2000 208 1 213 225 10.1016/S0010‑8545(00)00338‑6
    [Google Scholar]
  201. Liu J. Zhang H. Chen C. Deng H. Lu T. Ji L. Interaction of macrocyclic copper(II) complexes with calf thymus DNA: Effects of the side chains of the ligands on the DNA-binding behaviors, Dalt. Trans 2003 114 119 10.1039/b206079p
    [Google Scholar]
  202. Üstün E. Özdemir N. Şahin N. Activity analysis of new N -heterocyclic carbenes and silver N -heterocyclic carbene molecules against novel coronavirus by UV-vis, fluorescence spectroscopy and molecular docking. J. Coord. Chem. 2021 74 21-24 3109 3126 10.1080/00958972.2022.2026935
    [Google Scholar]
  203. Sączewski J. Popenda Ł. Fedorowicz J. In silico swissadme analysis of antibacterial NHC–silver acetates and halides complexes. Appl. Sci. 2024 14 19 8865 10.3390/app14198865
    [Google Scholar]
  204. Ronga L. Varcamonti M. Tesauro D. Structure–activity relationships in NHC–silver complexes as antimicrobial agents. Molecules 2023 28 11 4435 10.3390/molecules28114435 37298911
    [Google Scholar]
  205. Bugarin A. Therapeutic N-heterocyclic carbenes: An interview with Alejandro Bugarin. Future Med. Chem. 2022 14 13 941 942 10.4155/fmc‑2022‑0090 35611681
    [Google Scholar]
  206. Yang S. Zhou T. Yu X. Szostak M. Ag–NHC complexes in the π-activation of alkynes. Molecules 2023 28 3 950 10.3390/molecules28030950 36770617
    [Google Scholar]
  207. Barriendos I. Crespo O. Gimeno M.C. Understanding the role of NHC ditopic ligand substituents in the molecular diversity and emissive properties of silver complexes. Inorg. Chem. 2024 63 45 21699 21710 10.1021/acs.inorgchem.4c02940
    [Google Scholar]
  208. Fatima T. Haque R.A. Razali M.R. Ahmad A. Asif M. Khadeer Ahamed M.B. Abdul Majid A.M.S. Effect of lipophilicity of wingtip groups on the anticancer potential of mono N‐heterocyclic carbene silver(I) complexes: Synthesis, crystal structures and in vitro anticancer study. Appl. Organomet. Chem. 2017 31 10 e3735 10.1002/aoc.3735
    [Google Scholar]
  209. Piatek M. O’Beirne C. Beato Z. Tacke M. Kavanagh K. Exposure of Candida parapsilosis to the silver(I) compound SBC3 induces alterations in the proteome and reduced virulence. Metallomics 2022 14 8 mfac046 10.1093/mtomcs/mfac046 35751649
    [Google Scholar]
  210. Vijayakumar M. Małecki J.G. Nagaraju D.H. Keri R.S. Budagumpi S. Engineering the coordination environment in the silver(I)- and Ruthenium(II)- N -heterocyclic carbene complexes in instigating the electrocatalytic hydrogen evolution reaction. Langmuir 2024 40 45 24002 24016 10.1021/acs.langmuir.4c03248
    [Google Scholar]
  211. Pueyo J. Joven-Sancho D. Martín A. Menjón B. Baya M. The fluoride method: Access to silver(III) NHC complexes. Chemistry 2024 30 12 e202303937 10.1002/chem.202303937 38157456
    [Google Scholar]
  212. Frith A. Clarke A.K. Heyam A. Lynam J.M. Newman P.D. Unsworth W.P. Willans C.E. Silver–N-heterocyclic carbenes in π–activation: Synergistic effects between the ligand ring size and the anion. Organometallics 2024 43 5 598 604 10.1021/acs.organomet.3c00476
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072349038250131050619
Loading
/content/journals/cbc/10.2174/0115734072349038250131050619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test